Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -29,13 +29,14 @@ disable_progress_bar()
|
|
| 29 |
import streamlit as st
|
| 30 |
|
| 31 |
st.title('predictyield-t5')
|
| 32 |
-
st.markdown('
|
| 33 |
-
st.markdown('
|
| 34 |
-
st.markdown('
|
| 35 |
display_text = 'input the reaction smiles (e.g. REACTANT:CC(C)n1ncnc1-c1cn2c(n1)-c1cnc(O)cc1OCC2.CCN(C(C)C)C(C)C.Cl.NC(=O)[C@@H]1C[C@H](F)CN1REAGENT: PRODUCT:O=C(NNC(=O)C(F)(F)F)C(F)(F)F)'
|
| 36 |
|
| 37 |
|
| 38 |
class CFG():
|
|
|
|
| 39 |
data = st.text_area(display_text)
|
| 40 |
pretrained_model_name_or_path = 'sagawa/ZINC-t5'
|
| 41 |
model = 't5'
|
|
@@ -46,103 +47,127 @@ class CFG():
|
|
| 46 |
seed = 42
|
| 47 |
num_workers=1
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def seed_everything(seed=42):
|
| 53 |
-
random.seed(seed)
|
| 54 |
-
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 55 |
-
np.random.seed(seed)
|
| 56 |
-
torch.manual_seed(seed)
|
| 57 |
-
torch.cuda.manual_seed(seed)
|
| 58 |
-
torch.backends.cudnn.deterministic = True
|
| 59 |
-
seed_everything(seed=CFG.seed)
|
| 60 |
-
|
| 61 |
-
CFG.tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
|
| 62 |
-
|
| 63 |
-
def prepare_input(cfg, text):
|
| 64 |
-
inputs = cfg.tokenizer(text, add_special_tokens=True, max_length=CFG.max_len, padding='max_length', return_offsets_mapping=False, truncation=True, return_attention_mask=True)
|
| 65 |
-
for k, v in inputs.items():
|
| 66 |
-
inputs[k] = torch.tensor(v, dtype=torch.long)
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
def
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
return inputs
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
else:
|
| 96 |
-
self.
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
| 100 |
else:
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
-
def forward(self, inputs):
|
| 109 |
-
outputs = self.model(**inputs)
|
| 110 |
-
last_hidden_states = outputs[0]
|
| 111 |
-
output = self.fc1(self.fc_dropout1(last_hidden_states)[:, 0, :].view(-1, self.config.hidden_size))
|
| 112 |
-
output = self.fc2(self.fc_dropout2(output))
|
| 113 |
-
return output
|
| 114 |
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
model.
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
|
|
|
| 29 |
import streamlit as st
|
| 30 |
|
| 31 |
st.title('predictyield-t5')
|
| 32 |
+
st.markdown('##### At this space, you can predict the yields of reactions from their inputs.')
|
| 33 |
+
st.markdown('##### The code expects input_data as a string or CSV file that contains an "input" column. The format of the string or contents of the column are like "REACTANT:{reactants of the reaction}REAGENT:{reagents, catalysts, or solvents of the reaction}PRODUCT:{products of the reaction}".')
|
| 34 |
+
st.markdown('##### If there are no reagents or catalysts, fill the blank with a space. And if there are multiple reactants, concatenate them with "."')
|
| 35 |
display_text = 'input the reaction smiles (e.g. REACTANT:CC(C)n1ncnc1-c1cn2c(n1)-c1cnc(O)cc1OCC2.CCN(C(C)C)C(C)C.Cl.NC(=O)[C@@H]1C[C@H](F)CN1REAGENT: PRODUCT:O=C(NNC(=O)C(F)(F)F)C(F)(F)F)'
|
| 36 |
|
| 37 |
|
| 38 |
class CFG():
|
| 39 |
+
uploaded_file = st.file_uploader("Choose a CSV file")
|
| 40 |
data = st.text_area(display_text)
|
| 41 |
pretrained_model_name_or_path = 'sagawa/ZINC-t5'
|
| 42 |
model = 't5'
|
|
|
|
| 47 |
seed = 42
|
| 48 |
num_workers=1
|
| 49 |
|
| 50 |
+
if st.button('predict'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def seed_everything(seed=42):
|
| 56 |
+
random.seed(seed)
|
| 57 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 58 |
+
np.random.seed(seed)
|
| 59 |
+
torch.manual_seed(seed)
|
| 60 |
+
torch.cuda.manual_seed(seed)
|
| 61 |
+
torch.backends.cudnn.deterministic = True
|
| 62 |
+
seed_everything(seed=CFG.seed)
|
| 63 |
|
| 64 |
+
CFG.tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
|
| 65 |
+
|
| 66 |
+
def prepare_input(cfg, text):
|
| 67 |
+
inputs = cfg.tokenizer(text, add_special_tokens=True, max_length=CFG.max_len, padding='max_length', return_offsets_mapping=False, truncation=True, return_attention_mask=True)
|
| 68 |
+
for k, v in inputs.items():
|
| 69 |
+
inputs[k] = torch.tensor(v, dtype=torch.long)
|
| 70 |
|
| 71 |
return inputs
|
| 72 |
|
| 73 |
+
class TestDataset(Dataset):
|
| 74 |
+
def __init__(self, cfg, df):
|
| 75 |
+
self.cfg = cfg
|
| 76 |
+
self.inputs = df['input'].values
|
| 77 |
+
|
| 78 |
+
def __len__(self):
|
| 79 |
+
return len(self.inputs)
|
| 80 |
+
|
| 81 |
+
def __getitem__(self, item):
|
| 82 |
+
inputs = prepare_input(self.cfg, self.inputs[item])
|
| 83 |
+
|
| 84 |
+
return inputs
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class RegressionModel(nn.Module):
|
| 88 |
+
def __init__(self, cfg, config_path=None, pretrained=False):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.cfg = cfg
|
| 91 |
+
if config_path is None:
|
| 92 |
+
self.config = AutoConfig.from_pretrained(cfg.pretrained_model_name_or_path, output_hidden_states=True)
|
| 93 |
else:
|
| 94 |
+
self.config = torch.load(config_path)
|
| 95 |
+
if pretrained:
|
| 96 |
+
if 't5' in cfg.model:
|
| 97 |
+
self.model = T5EncoderModel.from_pretrained(CFG.pretrained_model_name_or_path)
|
| 98 |
+
else:
|
| 99 |
+
self.model = AutoModel.from_pretrained(CFG.pretrained_model_name_or_path)
|
| 100 |
else:
|
| 101 |
+
if 't5' in cfg.model:
|
| 102 |
+
self.model = T5EncoderModel.from_pretrained('sagawa/ZINC-t5')
|
| 103 |
+
else:
|
| 104 |
+
self.model = AutoModel.from_config(self.config)
|
| 105 |
+
self.model.resize_token_embeddings(len(cfg.tokenizer))
|
| 106 |
+
self.fc_dropout1 = nn.Dropout(cfg.fc_dropout)
|
| 107 |
+
self.fc1 = nn.Linear(self.config.hidden_size, self.config.hidden_size)
|
| 108 |
+
self.fc_dropout2 = nn.Dropout(cfg.fc_dropout)
|
| 109 |
+
self.fc2 = nn.Linear(self.config.hidden_size, 1)
|
| 110 |
+
|
| 111 |
+
def forward(self, inputs):
|
| 112 |
+
outputs = self.model(**inputs)
|
| 113 |
+
last_hidden_states = outputs[0]
|
| 114 |
+
output = self.fc1(self.fc_dropout1(last_hidden_states)[:, 0, :].view(-1, self.config.hidden_size))
|
| 115 |
+
output = self.fc2(self.fc_dropout2(output))
|
| 116 |
+
return output
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
|
| 120 |
+
def inference_fn(test_loader, model, device):
|
| 121 |
+
preds = []
|
| 122 |
+
model.eval()
|
| 123 |
+
model.to(device)
|
| 124 |
+
tk0 = tqdm(test_loader, total=len(test_loader))
|
| 125 |
+
for inputs in tk0:
|
| 126 |
+
for k, v in inputs.items():
|
| 127 |
+
inputs[k] = v.to(device)
|
| 128 |
+
with torch.no_grad():
|
| 129 |
+
y_preds = model(inputs)
|
| 130 |
+
preds.append(y_preds.to('cpu').numpy())
|
| 131 |
+
predictions = np.concatenate(preds)
|
| 132 |
+
return predictions
|
| 133 |
|
| 134 |
+
model = RegressionModel(CFG, config_path=CFG.model_name_or_path + '/config.pth', pretrained=False)
|
| 135 |
+
state = torch.load(CFG.model_name_or_path + '/ZINC-t5_best.pth', map_location=torch.device('cpu'))
|
| 136 |
+
model.load_state_dict(state)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
if CFG.uploaded_file is not None:
|
| 140 |
+
test_ds = pd.read_csv(CFG.uploaded_file)
|
| 141 |
+
|
| 142 |
+
test_dataset = TestDataset(CFG, test_ds)
|
| 143 |
+
test_loader = DataLoader(test_dataset,
|
| 144 |
+
batch_size=CFG.batch_size,
|
| 145 |
+
shuffle=False,
|
| 146 |
+
num_workers=CFG.num_workers, pin_memory=True, drop_last=False)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
prediction = inference_fn(test_loader, model, device)
|
| 150 |
+
|
| 151 |
+
test_ds['prediction'] = prediction*100
|
| 152 |
+
test_ds['prediction'] = test_ds['prediction'].clip(0, 100)
|
| 153 |
+
csv = test_ds.to_csv(index=False)
|
| 154 |
+
st.download_button(
|
| 155 |
+
label="Download data as CSV",
|
| 156 |
+
data=csv,
|
| 157 |
+
file_name='output.csv',
|
| 158 |
+
mime='text/csv'
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
else:
|
| 162 |
+
test_ds = pd.DataFrame.from_dict({'input': CFG.data}, orient='index').T
|
| 163 |
+
test_dataset = TestDataset(CFG, test_ds)
|
| 164 |
+
test_loader = DataLoader(test_dataset,
|
| 165 |
+
batch_size=1,
|
| 166 |
+
shuffle=False,
|
| 167 |
+
num_workers=CFG.num_workers, pin_memory=True, drop_last=False)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
prediction = inference_fn(test_loader, model, device)
|
| 171 |
+
prediction = max(min(prediction[0][0]*100, 100), 0)
|
| 172 |
+
st.text('yiled: '+ str(prediction))
|
| 173 |
|