Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,15 @@
|
|
1 |
# app.py
|
2 |
import os
|
|
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from pydantic import BaseModel
|
5 |
from huggingface_hub import InferenceClient
|
6 |
from typing import Optional
|
7 |
|
|
|
|
|
|
|
|
|
8 |
# Initialize FastAPI app
|
9 |
app = FastAPI(
|
10 |
title="LLM Chat API",
|
@@ -17,26 +22,32 @@ class ChatRequest(BaseModel):
|
|
17 |
|
18 |
class ChatResponse(BaseModel):
|
19 |
response: str
|
|
|
20 |
|
21 |
def llm_chat_response(text: str) -> str:
|
22 |
try:
|
23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
24 |
if not HF_TOKEN:
|
|
|
25 |
raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
|
26 |
|
|
|
27 |
client = InferenceClient(api_key=HF_TOKEN)
|
|
|
28 |
messages = [
|
29 |
{
|
30 |
"role": "user",
|
31 |
"content": [
|
32 |
{
|
33 |
"type": "text",
|
34 |
-
"text": text + str('describe in one line only')
|
35 |
}
|
36 |
]
|
37 |
}
|
38 |
]
|
39 |
|
|
|
40 |
response_from_llama = client.chat.completions.create(
|
41 |
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
42 |
messages=messages,
|
@@ -44,18 +55,31 @@ def llm_chat_response(text: str) -> str:
|
|
44 |
)
|
45 |
return response_from_llama.choices[0].message['content']
|
46 |
except Exception as e:
|
|
|
47 |
raise HTTPException(status_code=500, detail=str(e))
|
48 |
|
49 |
@app.post("/chat", response_model=ChatResponse)
|
50 |
async def chat(request: ChatRequest):
|
51 |
try:
|
|
|
52 |
response = llm_chat_response(request.text)
|
53 |
-
return ChatResponse(response=response)
|
54 |
except HTTPException as he:
|
|
|
55 |
raise he
|
56 |
except Exception as e:
|
|
|
57 |
raise HTTPException(status_code=500, detail=str(e))
|
58 |
|
59 |
@app.get("/")
|
60 |
async def root():
|
61 |
-
return {"message": "Welcome to the LLM Chat API. Use POST /chat endpoint to get responses."}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# app.py
|
2 |
import os
|
3 |
+
import logging
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from pydantic import BaseModel
|
6 |
from huggingface_hub import InferenceClient
|
7 |
from typing import Optional
|
8 |
|
9 |
+
# Set up logging
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
# Initialize FastAPI app
|
14 |
app = FastAPI(
|
15 |
title="LLM Chat API",
|
|
|
22 |
|
23 |
class ChatResponse(BaseModel):
|
24 |
response: str
|
25 |
+
status: str
|
26 |
|
27 |
def llm_chat_response(text: str) -> str:
|
28 |
try:
|
29 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
30 |
+
logger.info("Checking HF_TOKEN...")
|
31 |
if not HF_TOKEN:
|
32 |
+
logger.error("HF_TOKEN not found in environment variables")
|
33 |
raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
|
34 |
|
35 |
+
logger.info("Initializing InferenceClient...")
|
36 |
client = InferenceClient(api_key=HF_TOKEN)
|
37 |
+
|
38 |
messages = [
|
39 |
{
|
40 |
"role": "user",
|
41 |
"content": [
|
42 |
{
|
43 |
"type": "text",
|
44 |
+
"text": text + str(' describe in one line only')
|
45 |
}
|
46 |
]
|
47 |
}
|
48 |
]
|
49 |
|
50 |
+
logger.info("Sending request to model...")
|
51 |
response_from_llama = client.chat.completions.create(
|
52 |
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
53 |
messages=messages,
|
|
|
55 |
)
|
56 |
return response_from_llama.choices[0].message['content']
|
57 |
except Exception as e:
|
58 |
+
logger.error(f"Error in llm_chat_response: {str(e)}")
|
59 |
raise HTTPException(status_code=500, detail=str(e))
|
60 |
|
61 |
@app.post("/chat", response_model=ChatResponse)
|
62 |
async def chat(request: ChatRequest):
|
63 |
try:
|
64 |
+
logger.info(f"Received chat request with text: {request.text}")
|
65 |
response = llm_chat_response(request.text)
|
66 |
+
return ChatResponse(response=response, status="success")
|
67 |
except HTTPException as he:
|
68 |
+
logger.error(f"HTTP Exception in chat endpoint: {str(he)}")
|
69 |
raise he
|
70 |
except Exception as e:
|
71 |
+
logger.error(f"Unexpected error in chat endpoint: {str(e)}")
|
72 |
raise HTTPException(status_code=500, detail=str(e))
|
73 |
|
74 |
@app.get("/")
|
75 |
async def root():
|
76 |
+
return {"message": "Welcome to the LLM Chat API. Use POST /chat endpoint to get responses."}
|
77 |
+
|
78 |
+
# Add error handling for 404 and 405 errors
|
79 |
+
@app.exception_handler(404)
|
80 |
+
async def not_found_handler(request, exc):
|
81 |
+
return {"error": "Endpoint not found. Please use POST /chat for queries."}, 404
|
82 |
+
|
83 |
+
@app.exception_handler(405)
|
84 |
+
async def method_not_allowed_handler(request, exc):
|
85 |
+
return {"error": "Method not allowed. Please check the API documentation."}, 405
|