Spaces:
Sleeping
Sleeping
response updated
Browse files
app.py
CHANGED
@@ -67,11 +67,14 @@ processor = AutoProcessor.from_pretrained(model_name, use_auth_token=HF_TOKEN)
|
|
67 |
def predict_image(image_url, text):
|
68 |
try:
|
69 |
# Download the image from the URL
|
|
|
|
|
|
|
|
|
70 |
response = requests.get(image_url)
|
71 |
response.raise_for_status() # Raise an error for invalid responses
|
72 |
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
73 |
-
|
74 |
-
# Prepare the input messages
|
75 |
messages = [
|
76 |
{"role": "user", "content": [
|
77 |
{"type": "image"}, # Specify that an image is provided
|
@@ -83,7 +86,26 @@ def predict_image(image_url, text):
|
|
83 |
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
84 |
|
85 |
# Process the inputs and move to the appropriate device
|
86 |
-
inputs = processor(image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
# Generate a response from the model
|
89 |
# outputs = model.generate(**inputs, max_new_tokens=100)
|
@@ -91,23 +113,23 @@ def predict_image(image_url, text):
|
|
91 |
# # Decode the output to return the final response
|
92 |
# response = processor.decode(outputs[0], skip_special_tokens=True)
|
93 |
|
94 |
-
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
95 |
|
96 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
|
97 |
-
generated_text = ""
|
98 |
|
99 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
100 |
-
thread.start()
|
101 |
-
buffer = ""
|
102 |
-
|
103 |
-
for new_text in streamer:
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
|
109 |
-
return buffer
|
110 |
-
|
111 |
|
112 |
except Exception as e:
|
113 |
raise ValueError(f"Error during prediction: {str(e)}")
|
|
|
67 |
def predict_image(image_url, text):
|
68 |
try:
|
69 |
# Download the image from the URL
|
70 |
+
# response = requests.get(image_url)
|
71 |
+
# response.raise_for_status() # Raise an error for invalid responses
|
72 |
+
# image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
73 |
+
|
74 |
response = requests.get(image_url)
|
75 |
response.raise_for_status() # Raise an error for invalid responses
|
76 |
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
77 |
+
|
|
|
78 |
messages = [
|
79 |
{"role": "user", "content": [
|
80 |
{"type": "image"}, # Specify that an image is provided
|
|
|
86 |
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
87 |
|
88 |
# Process the inputs and move to the appropriate device
|
89 |
+
inputs = processor(image, input_text, return_tensors="pt").to(device)
|
90 |
+
|
91 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
92 |
+
|
93 |
+
# Decode the output to return the final response
|
94 |
+
response = processor.decode(outputs[0], skip_special_tokens=True)
|
95 |
+
|
96 |
+
# # Prepare the input messages
|
97 |
+
# messages = [
|
98 |
+
# {"role": "user", "content": [
|
99 |
+
# {"type": "image"}, # Specify that an image is provided
|
100 |
+
# {"type": "text", "text": text} # Add the user-provided text input
|
101 |
+
# ]}
|
102 |
+
# ]
|
103 |
+
|
104 |
+
# # Create the input text using the processor's chat template
|
105 |
+
# input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
106 |
+
|
107 |
+
# # Process the inputs and move to the appropriate device
|
108 |
+
# inputs = processor(image=image, text=input_text, return_tensors="pt").to("cuda")
|
109 |
|
110 |
# Generate a response from the model
|
111 |
# outputs = model.generate(**inputs, max_new_tokens=100)
|
|
|
113 |
# # Decode the output to return the final response
|
114 |
# response = processor.decode(outputs[0], skip_special_tokens=True)
|
115 |
|
116 |
+
# streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
117 |
|
118 |
+
# generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
|
119 |
+
# generated_text = ""
|
120 |
|
121 |
+
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
122 |
+
# thread.start()
|
123 |
+
# buffer = ""
|
124 |
+
|
125 |
+
# for new_text in streamer:
|
126 |
+
# buffer += new_text
|
127 |
+
# # generated_text_without_prompt = buffer
|
128 |
+
# # # time.sleep(0.01)
|
129 |
+
# # yield buffer
|
130 |
|
131 |
+
# return buffer
|
132 |
+
return response
|
133 |
|
134 |
except Exception as e:
|
135 |
raise ValueError(f"Error during prediction: {str(e)}")
|