Spaces:
Sleeping
Sleeping
flask - from gradio to flask
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
4 |
from transformers import AutoProcessor, MllamaForConditionalGeneration, TextIteratorStreamer
|
@@ -8,6 +8,7 @@ import tempfile
|
|
8 |
import requests
|
9 |
from PyPDF2 import PdfReader
|
10 |
from threading import Thread
|
|
|
11 |
|
12 |
# Check if we're running in a Hugging Face Space and if SPACES_ZERO_GPU is enabled
|
13 |
# IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
@@ -20,6 +21,8 @@ LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
|
|
20 |
print(f"Using device: {device}")
|
21 |
print(f"Low memory mode: {LOW_MEMORY}")
|
22 |
|
|
|
|
|
23 |
# Get Hugging Face token from environment variables
|
24 |
HF_TOKEN = os.environ.get('HF_TOKEN')
|
25 |
|
@@ -79,9 +82,11 @@ def extract_text_from_pdf(pdf_url):
|
|
79 |
# raise HTTPException(status_code=400, detail=f"Error extracting text from PDF: {str(e)}")
|
80 |
|
81 |
@spaces.GPU
|
82 |
-
def predict_text(text
|
83 |
-
pdf_text = extract_text_from_pdf('https://arinsight.co/2024_FA_AEC_1200_GR1_GR2.pdf')
|
84 |
-
|
|
|
|
|
85 |
# Prepare the input messages
|
86 |
messages = [{"role": "user", "content": [{"type": "text", "text": text_combined}]}]
|
87 |
|
@@ -100,7 +105,7 @@ def predict_text(text, url = 'https://arinsight.co/2024_FA_AEC_1200_GR1_GR2.pdf'
|
|
100 |
|
101 |
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
102 |
|
103 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=
|
104 |
generated_text = ""
|
105 |
|
106 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
@@ -116,18 +121,50 @@ def predict_text(text, url = 'https://arinsight.co/2024_FA_AEC_1200_GR1_GR2.pdf'
|
|
116 |
return buffer
|
117 |
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
inputs=[
|
123 |
-
# gr.Image(type="pil", label="Image Input"), # Image input with label
|
124 |
-
gr.Textbox(label="Text Input") # Textbox input with label
|
125 |
-
],
|
126 |
-
outputs=gr.Textbox(label="Generated Response"), # Output with a more descriptive label
|
127 |
-
title="Llama 3.2 11B Vision Instruct Demo", # Title of the interface
|
128 |
-
description="This demo uses Meta's Llama 3.2 11B Vision model to generate responses based on an image and text input.", # Short description
|
129 |
-
theme="compact" # Using a compact theme for a cleaner look
|
130 |
)
|
131 |
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
import os
|
3 |
import torch
|
4 |
from transformers import AutoProcessor, MllamaForConditionalGeneration, TextIteratorStreamer
|
|
|
8 |
import requests
|
9 |
from PyPDF2 import PdfReader
|
10 |
from threading import Thread
|
11 |
+
from flask import Flask, request, jsonify
|
12 |
|
13 |
# Check if we're running in a Hugging Face Space and if SPACES_ZERO_GPU is enabled
|
14 |
# IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
|
|
21 |
print(f"Using device: {device}")
|
22 |
print(f"Low memory mode: {LOW_MEMORY}")
|
23 |
|
24 |
+
app = Flask(__name__)
|
25 |
+
|
26 |
# Get Hugging Face token from environment variables
|
27 |
HF_TOKEN = os.environ.get('HF_TOKEN')
|
28 |
|
|
|
82 |
# raise HTTPException(status_code=400, detail=f"Error extracting text from PDF: {str(e)}")
|
83 |
|
84 |
@spaces.GPU
|
85 |
+
def predict_text(text):
|
86 |
+
# pdf_text = extract_text_from_pdf('https://arinsight.co/2024_FA_AEC_1200_GR1_GR2.pdf')
|
87 |
+
|
88 |
+
text_combined = text # + "\n\nExtracted Text from PDF:\n" + pdf_text
|
89 |
+
|
90 |
# Prepare the input messages
|
91 |
messages = [{"role": "user", "content": [{"type": "text", "text": text_combined}]}]
|
92 |
|
|
|
105 |
|
106 |
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
107 |
|
108 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
|
109 |
generated_text = ""
|
110 |
|
111 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
|
|
121 |
return buffer
|
122 |
|
123 |
|
124 |
+
PROMPT = (
|
125 |
+
"Extract the following information from the provided text ONLY "
|
126 |
+
"Course Code, Course Name, Credit, Delivery method, Course description, and Topical outline and do not add anything else except the information available in this text. "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
)
|
128 |
|
129 |
+
@app.route("/", methods=["GET"])
|
130 |
+
def home():
|
131 |
+
return jsonify({"message": "Welcome to the PDF Extraction API. Use the /extract endpoint to extract information."})
|
132 |
+
|
133 |
+
@app.route("/favicon.ico")
|
134 |
+
def favicon():
|
135 |
+
return "", 204
|
136 |
+
|
137 |
+
@app.route("/extract", methods=["POST"])
|
138 |
+
def extract_info():
|
139 |
+
data = request.json
|
140 |
+
if not data or "url" not in data:
|
141 |
+
return jsonify({"error": "Please provide a PDF URL in the request body."}), 400
|
142 |
+
|
143 |
+
pdf_url = data["url"]
|
144 |
+
try:
|
145 |
+
pdf_text = extract_text_from_pdf(pdf_url)
|
146 |
+
prompt = f"{PROMPT}\n\n{pdf_text}"
|
147 |
+
response = predict_text(prompt)
|
148 |
+
return jsonify({"extracted_info": response})
|
149 |
+
except Exception as e:
|
150 |
+
return jsonify({"error": str(e)}), 500
|
151 |
+
|
152 |
+
if __name__ == "__main__":
|
153 |
+
app.run(host="0.0.0.0", port=7860)
|
154 |
+
|
155 |
+
|
156 |
+
# # Define the Gradio interface
|
157 |
+
# interface = gr.Interface(
|
158 |
+
# fn=predict_text,
|
159 |
+
# inputs=[
|
160 |
+
# # gr.Image(type="pil", label="Image Input"), # Image input with label
|
161 |
+
# gr.Textbox(label="Text Input") # Textbox input with label
|
162 |
+
# ],
|
163 |
+
# outputs=gr.Textbox(label="Generated Response"), # Output with a more descriptive label
|
164 |
+
# title="Llama 3.2 11B Vision Instruct Demo", # Title of the interface
|
165 |
+
# description="This demo uses Meta's Llama 3.2 11B Vision model to generate responses based on an image and text input.", # Short description
|
166 |
+
# theme="compact" # Using a compact theme for a cleaner look
|
167 |
+
# )
|
168 |
+
|
169 |
+
# # Launch the interface
|
170 |
+
# interface.launch(debug=True)
|