sagivp commited on
Commit
044f948
·
verified ·
1 Parent(s): 632d3a4

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +6 -6
  2. app.py +87 -0
  3. requirements.txt +4 -0
README.md CHANGED
@@ -1,13 +1,13 @@
1
  ---
2
- title: Shirts Occasion
3
- emoji: 🏢
4
- colorFrom: yellow
5
- colorTo: red
6
  sdk: gradio
7
- sdk_version: 5.8.0
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Shirts_Occasion
3
+ emoji: 🌍
4
+ colorFrom: red
5
+ colorTo: blue
6
  sdk: gradio
7
+ sdk_version: 4.42.0
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
12
 
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import ViTForImageClassification, ViTFeatureExtractor, AutoConfig
3
+ import gradio as gr
4
+ from PIL import Image
5
+ import os
6
+ import logging
7
+ from safetensors.torch import load_file # Import safetensors loading function
8
+
9
+ # Set up logging
10
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
11
+
12
+ # Define the directory containing the model files
13
+ model_dir = "." # Use current directory
14
+
15
+ # Define paths to the specific model files
16
+ model_path = os.path.join(model_dir, "model.safetensors")
17
+ config_path = os.path.join(model_dir, "config.json")
18
+ preprocessor_path = os.path.join(model_dir, "preprocessor_config.json")
19
+
20
+ # Check if all required files exist
21
+ for path in [model_path, config_path, preprocessor_path]:
22
+ if not os.path.exists(path):
23
+ logging.error(f"File not found: {path}")
24
+ raise FileNotFoundError(f"Required file not found: {path}")
25
+ else:
26
+ logging.info(f"Found file: {path}")
27
+
28
+ # Load the configuration
29
+ config = AutoConfig.from_pretrained(config_path)
30
+
31
+ # Ensure the labels are consistent with the model's config
32
+ labels = list(config.id2label.values())
33
+ logging.info(f"Labels: {labels}")
34
+
35
+ # Load the feature extractor
36
+ feature_extractor = ViTFeatureExtractor.from_pretrained(preprocessor_path)
37
+
38
+ # Load the model using the safetensors file
39
+ state_dict = load_file(model_path) # Use safetensors to load the model weights
40
+ model = ViTForImageClassification.from_pretrained(
41
+ pretrained_model_name_or_path=None,
42
+ config=config,
43
+ state_dict=state_dict
44
+ )
45
+
46
+ # Ensure the model is in evaluation mode
47
+ model.eval()
48
+ logging.info("Model set to evaluation mode")
49
+
50
+ # Define the prediction function
51
+ def predict(image):
52
+ logging.info("Starting prediction")
53
+ logging.info(f"Input image shape: {image.size}")
54
+
55
+ # Preprocess the image
56
+ logging.info("Preprocessing image")
57
+ inputs = feature_extractor(images=image, return_tensors="pt")
58
+ logging.info(f"Preprocessed input shape: {inputs['pixel_values'].shape}")
59
+
60
+ logging.info("Running inference")
61
+ with torch.no_grad():
62
+ outputs = model(**inputs)
63
+ logits = outputs.logits
64
+ probabilities = torch.nn.functional.softmax(logits[0], dim=0)
65
+
66
+ logging.info(f"Raw logits: {logits}")
67
+ logging.info(f"Probabilities: {probabilities}")
68
+
69
+ # Prepare the output dictionary
70
+ result = {labels[i]: float(probabilities[i]) for i in range(len(labels))}
71
+ logging.info(f"Prediction result: {result}")
72
+
73
+ return result
74
+
75
+ # Set up the Gradio Interface
76
+ logging.info("Setting up Gradio interface")
77
+ gradio_app = gr.Interface(
78
+ fn=predict,
79
+ inputs=gr.Image(type="pil"),
80
+ outputs=gr.Label(num_top_classes=6),
81
+ title="Shirts Occasion Classifier"
82
+ )
83
+
84
+ # Launch the app
85
+ if __name__ == "__main__":
86
+ logging.info("Launching the app")
87
+ gradio_app.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ gradio
4
+ pillow