Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,36 +5,78 @@ import requests
|
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-
|
13 |
-
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-
|
14 |
|
15 |
-
|
16 |
-
shapes_desc = list(map(lambda x: "a " + x + " pants shape", shapes))
|
17 |
-
text = tokenizer(shapes_desc)
|
18 |
|
19 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
20 |
-
|
21 |
-
|
|
|
22 |
|
23 |
def predict(inp):
|
24 |
image = preprocess_val(inp).unsqueeze(0)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
gr.Interface(fn=predict,
|
36 |
inputs=gr.Image(type="pil"),
|
37 |
-
outputs=gr.Label(
|
38 |
examples=["imgs/cargo.jpg", "imgs/palazzo.jpg",
|
39 |
"imgs/leggings.jpg", "imgs/jogger.jpg",
|
40 |
"imgs/chinos.jpg", "imgs/dresspants.jpg"]).launch(share=True)
|
|
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
|
8 |
+
catgs = [
|
9 |
+
"Shirts",
|
10 |
+
"SetShirtsPants",
|
11 |
+
"SetJacketsPants",
|
12 |
+
"Pants",
|
13 |
+
"Jeans",
|
14 |
+
"JacketsCoats",
|
15 |
+
"Shoes",
|
16 |
+
"Underpants",
|
17 |
+
"Socks",
|
18 |
+
"Hats",
|
19 |
+
"Wallets",
|
20 |
+
"Bags",
|
21 |
+
"Scarfs",
|
22 |
+
"Parasols&Umbrellas",
|
23 |
+
"Necklaces",
|
24 |
+
"Towels&Robes",
|
25 |
+
"WallObjects",
|
26 |
+
"Rugs",
|
27 |
+
"Glassware",
|
28 |
+
"Mugs&Cups",
|
29 |
+
"OralCare"
|
30 |
+
]
|
31 |
|
32 |
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
|
33 |
+
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
|
34 |
|
35 |
+
text = tokenizer(catgs)
|
|
|
|
|
36 |
|
37 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
38 |
+
text_features = model.encode_text(text)
|
39 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
40 |
+
|
41 |
|
42 |
def predict(inp):
|
43 |
image = preprocess_val(inp).unsqueeze(0)
|
44 |
|
45 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
46 |
+
image_features = model.encode_image(image)
|
47 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
48 |
+
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
49 |
+
|
50 |
+
max_prob_idx = np.argmax(text_probs)
|
51 |
+
pred_lbl = catgs[max_prob_idx]
|
52 |
+
pred_lbl_prob = text_probs[0, max_prob_idx].item()
|
53 |
+
|
54 |
+
mw = ["men", "women", "boy", "girl"]
|
55 |
+
catgs = [
|
56 |
+
mw[0] + "s " + pred_lbl,
|
57 |
+
mw[1] + "s " + pred_lbl,
|
58 |
+
mw[2] + "s " + pred_lbl,
|
59 |
+
mw[3] + "s " + pred_lbl
|
60 |
+
]
|
61 |
+
text = tokenizer(catgs)
|
62 |
+
|
63 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
64 |
+
image_features = model.encode_image(image)
|
65 |
+
text_features = model.encode_text(text)
|
66 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
67 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
68 |
+
|
69 |
+
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
70 |
+
|
71 |
+
max_prob_idx = np.argmax(text_probs)
|
72 |
+
pred_lbl_f = mw[max_prob_idx]
|
73 |
+
pred_lbl_prob_f = text_probs[0, max_prob_idx].item()
|
74 |
+
tlt = f"{pred_lbl} <{100.0 * pred_lbl_prob:.1f}%> , {pred_lbl_f} <{100.0 * pred_lbl_prob_f:.1f}%>"
|
75 |
+
return(tlt)
|
76 |
|
77 |
gr.Interface(fn=predict,
|
78 |
inputs=gr.Image(type="pil"),
|
79 |
+
outputs=gr.Label(),
|
80 |
examples=["imgs/cargo.jpg", "imgs/palazzo.jpg",
|
81 |
"imgs/leggings.jpg", "imgs/jogger.jpg",
|
82 |
"imgs/chinos.jpg", "imgs/dresspants.jpg"]).launch(share=True)
|