import gradio as gr import open_clip import torch import requests import numpy as np from PIL import Image shapes = ["leggings", "jogger", "palazzo", "cargo", "dresspants", "chinos"] model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionCLIP') tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP') shapes_desc = list(map(lambda x: "a " + x + " pants shape", shapes)) text = tokenizer(shapes_desc) with torch.no_grad(), torch.cuda.amp.autocast(): text_features = model.encode_text(text) text_features /= text_features.norm(dim=-1, keepdim=True) def predict(inp): image = preprocess_val(inp).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image) image_features /= image_features.norm(dim=-1, keepdim=True) text_probs = (100 * image_features @ text_features.T).softmax(dim=-1) confidences = {shapes[i]: float(text_probs[0, i]) for i in range(6)} return confidences gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=6), examples=["imgs/cargo.jpg", "imgs/palazzo.jpg", "imgs/leggings.jpg", "imgs/jogger.jpg", "imgs/chinos.jpg", "imgs/dresspants.jpg"]).launch(share=True)