import gradio as gr from fastai.vision.all import * import pathlib plt = platform.system() if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Shirt Fit Classifier" description = "A Loose vs. Fitted shirt classifier" article="
" examples = ['demo1.jpg', 'demo2.jpg', 'demo3.jpg', 'demo4.jpg'] interpretation='default' enable_queue=True gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(300, 300)), outputs=gr.outputs.Label(num_top_classes=2), title=title, description=description, article=article, examples=examples, interpretation=interpretation, enable_queue=enable_queue).launch()