Spaces:
Sleeping
Sleeping
File size: 15,551 Bytes
6b83428 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import gc
import glob
import logging
import os
import traceback
from datetime import timedelta
from typing import Dict
import netCDF4
import numpy as np
import pandas as pd
import rasterio
from libs.utils import setup_logging
from libs.utils import verbose as vprint
setup_logging()
log = logging.getLogger(__name__)
CONFIG = {}
V = 1
V_IGNORE = [] # Debug, Warning, Error
# print(os.getcwd())
def get_historic_agg(
input_dir: str,
historic_years: int,
current_window_start: str,
current_window_end: str,
layer_name: str,
agg_window: str = "mean",
agg_history: str = "mean",
) -> np.ndarray:
"""Get the historic mean for a given window_start and window_end dates.
Parameters
----------
input_dir : str
Path to the directory containing the netcdf files.
historic_years : int
Number of historic years to consider for the mean.
current_window_start : str
Start date of the current window. Format: YYYY-MM-DD.
current_window_end : str
End date of the current window. Format: YYYY-MM-DD.
layer_name : str
Soil layer to consider for the mean.
agg_window : str
Aggregation method for the window. Default is "mean". Possible values: "mean", "median", "max", "min", "std", "var".
agg_history : str
Aggregation method for the historic years. Default is "mean". Possible values: "mean", "median", "max", "min", "std", "var".
Returns
-------
np.ndarray
Array of the historic mean for the given window_start and window_end dates for the historic years.
Raises
------
FileNotFoundError
If the file for the historic year is not found. Possible solutions:
- The historic year should be modelled before calling this function.
- The path to the historic year should be changed.
- Calculate for a more recent historic year by reducing historic_years value.
"""
# Get the window_start year
window_start_year = pd.to_datetime(current_window_start).year
window_end_year = pd.to_datetime(current_window_end).year
# Get the first year
first_year = window_start_year - historic_years
# Check if file exists for this year
if os.path.exists(os.path.join(input_dir, f"model_{first_year}.nc")):
# Get the list of historic windows
historic_agg = {}
for year in range(1, historic_years + 1):
args = {
"input_dir": input_dir,
"window_start": f"{window_start_year-year}{current_window_start[4:]}",
"window_end": f"{window_end_year-year}{current_window_end[4:]}",
"layer_name": layer_name,
"agg": agg_window,
}
# Get the range mean
historic_agg[window_start_year - year] = get_range_agg(**args)
historic_agg_np = np.array([historic_agg[year] for year in historic_agg])
# Get the aggregation of the historic years
if agg_history == "mean":
historic_agg_np = np.mean(historic_agg_np, axis=0)
elif agg_history == "median":
historic_agg_np = np.median(historic_agg_np, axis=0)
elif agg_history == "max":
historic_agg_np = np.max(historic_agg_np, axis=0)
elif agg_history == "min":
historic_agg_np = np.min(historic_agg_np, axis=0)
elif agg_history == "std":
historic_agg_np = np.std(historic_agg_np, axis=0)
elif agg_history == "var":
historic_agg_np = np.var(historic_agg_np, axis=0)
elif agg_history == "sum":
historic_agg_np = np.sum(historic_agg_np, axis=0)
else:
raise ValueError(
f"Invalid aggregation method: {agg_history}. Possible values: mean, median, max, min, std, var, sum."
)
return historic_agg_np
else:
raise FileNotFoundError(
f"File not found for the historic data: {os.path.join(input_dir,f'model_{first_year}.nc')}. Make sure the path is correct and the historic year for the requested year is modelled before calling this function."
)
def get_range_agg(
input_dir: str,
window_start: str,
window_end: str,
layer_name: str,
agg: str = "mean",
) -> np.ndarray:
"""Get the mean for a given window_start and window_end dates.
Parameters
----------
input_dir : str
Path to the directory containing the netcdf files.
window_start : str
Start date of the window. Format: YYYY-MM-DD.
window_end : str
End date of the window. Format: YYYY-MM-DD.
layer_name : str
Soil layer to consider for the mean.
agg : str
Aggregation method to use. Possible values: mean, median, max, min, std.
Returns
-------
np.ndarray
Mean raster for the given window_start and window_end dates.
"""
# Get the list of dates between two dates if date_from and date_to
dates = pd.DataFrame(
pd.date_range(
pd.to_datetime(window_start),
pd.to_datetime(window_end) - timedelta(days=1),
freq="d",
),
columns=["date"],
) # .strftime('%Y-%m-%d')
dates["dayofyear"] = dates["date"].dt.dayofyear - 1
dates["year"] = dates["date"].dt.year
dates["str_dates"] = dates["date"].dt.strftime("%Y-%m-%d")
yearly_dates = dates.groupby("year")["dayofyear"].apply(list).to_dict()
data_l = list()
# For each year, get the data for layer_name for the dates specified in yearly_dates
for year in yearly_dates:
# read the year file
nc_y = netCDF4.Dataset(os.path.join(input_dir, f"model_{year}.nc"))
vprint(
1,
V,
V_IGNORE,
Debug=f"getting data for year: {year} from layer: {layer_name}...",
)
# Get the data for the layer_name
data = nc_y.variables[layer_name][:, :, :]
# Get the data for the dates
days = yearly_dates[year]
data = data[days, :, :]
data_l.append(data)
nc_y.close()
del data
gc.collect()
# Concat data for all years
data_concat = np.concatenate(data_l, axis=0)
data_concat.shape
if agg == "mean":
# Get the mean raster for the range
data_agg = np.mean(data_concat, axis=0)
elif agg == "median":
# Get the median raster for the range
data_agg = np.median(data_concat, axis=0)
elif agg == "max":
# Get the max raster for the range
data_agg = np.max(data_concat, axis=0)
elif agg == "min":
# Get the min raster for the range
data_agg = np.min(data_concat, axis=0)
elif agg == "std":
# Get the std raster for the range
data_agg = np.std(data_concat, axis=0)
elif agg == "var":
# Get the var raster for the range
data_agg = np.var(data_concat, axis=0)
elif agg == "sum":
# Get the sum raster for the range
data_agg = np.sum(data_concat, axis=0)
else:
raise ValueError(
f"agg should be one of mean, median, max, min, std, var, sum. {agg} was provided."
)
print("done.")
return data_agg
def save(path, array, profile):
"""Save the array as a raster.
Parameters
----------
path : str
Path to the raster to save.
array : np.ndarray
Array to save as a raster.
profile : dict
Profile of the raster to save.
"""
with rasterio.open(path, "w", **profile) as dst:
dst.write(array, 1)
def analyse(
input,
window_start,
window_end,
historic_years: int,
layer: str,
match_raster: str = None,
output: str = None,
agg_history: str = "mean",
agg_window: str = "mean",
comparison: str = "diff",
) -> Dict[str, str]:
"""Main function to run the script.
Parameters
----------
input : str
Path to the input raster.
window_start : str
Start date of the window. Format: YYYY-MM-DD.
window_end : str
End date of the window. Format: YYYY-MM-DD.
historic_years : int
Number of historic years to use for the comparison.
layer : str
Soil layer to consider for the comparison.
match_raster : str
Path to the match raster. Default: None. If None, the match raster will be searched in the et_pp directory based on the input directory.
output : str
Path to the output raster. Default: None. If None, the output raster will be saved in the same directory as the input raster.
agg_history : str
Aggregation method to use for the historic years. Possible values: mean, median, max, min, std. Default: mean.
agg_window : str
Aggregation method to use for the window. Possible values: mean, median, max, min, std. Default: mean.
comparison : str
Comparison method to use. Possible values: diff, ratio. Default: diff.
Returns
-------
Dict[str,str]
Dictionary with the path to the output rasters.
"""
if output is None:
output = os.path.join(input, "analysis")
# Create the output directory if it does not exist
if not os.path.exists(output):
os.makedirs(output)
if match_raster is None:
match_raster = os.path.join(os.path.dirname(input), "et_pp")
files = glob.glob(os.path.join(match_raster, f"{window_start[:7]}*.tif"))
if len(files) == 0:
files = glob.glob(os.path.join(match_raster, f"{window_end[:7]}*.tif"))
if len(files) == 0:
vprint(
1,
V,
V_IGNORE,
Debug=f"Expanding the search for match raster file to find e closer date to {window_start[:5]}...",
)
files = glob.glob(os.path.join(match_raster, f"{window_start[:5]}*.tif"))
if len(files) == 0:
vprint(
1,
V,
V_IGNORE,
Debug=f"Expanding the search further for match raster file to find e closer date to {window_end[:5]}...",
)
files = glob.glob(os.path.join(match_raster, f"{window_end[:5]}*.tif"))
if len(files) == 0:
raise FileNotFoundError(
f"Could not find any matching raster in {match_raster} for the range of dates given at {window_start} / {window_end}!"
)
print(f"Found {len(files)} matching raster file {files[0]}.")
match_raster = files[0]
with rasterio.open(match_raster) as src:
profile = src.profile
# Get the layers
layer = layer
# Get the historic aggregated data
historic_data = get_historic_agg(
input_dir=input,
historic_years=historic_years,
current_window_start=window_start,
current_window_end=window_end,
agg_window=agg_window,
agg_history=agg_history,
layer_name=layer,
)
# Get aggregated current window data
current_data = get_range_agg(
input_dir=input,
window_start=window_start,
window_end=window_end,
agg=agg_window,
layer_name=layer,
)
# Compare the two rasters
if comparison == "diff":
delta = current_data - historic_data
else:
raise NotImplementedError(
f"comparison should be diff. {comparison} was provided."
)
# Save the rasters
historic_raster = os.path.join(
output,
f"historic-{window_start.replace('-','_')}-{window_end.replace('-','_')}-{layer}-w_{agg_window}-h_{agg_history}-y_{historic_years}.tif",
)
current_raster = os.path.join(
output,
f"current-{window_start.replace('-','_')}-{window_end.replace('-','_')}-{layer}-w_{agg_window}.tif",
)
delta_raster = os.path.join(
output,
f"delta-{window_start.replace('-','_')}-{window_end.replace('-','_')}-{layer}-w_{agg_window}-h_{agg_history}-y_{historic_years}.tif",
)
save(historic_raster, historic_data, profile)
save(current_raster, current_data, profile)
save(delta_raster, delta, profile)
# # Visualise the rasters
# # Read the saved rasters
# with rasterio.open(historic_raster) as src:
# historic_raster = src.read(1)
# with rasterio.open(current_raster) as src:
# current_raster = src.read(1)
# with rasterio.open(delta_raster) as src:
# delta_raster = src.read(1)
# # Plot the rasters
return {
"historic_raster": historic_raster,
"current_raster": current_raster,
"delta_raster": delta_raster,
}
if __name__ == "__main__":
# Load Configs
parser = argparse.ArgumentParser(
description="Download rainfall data from Google Earth Engine for a range of dates.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"-i",
"--input",
help="Absolute or relative path to the netcdf data ending with .nc. By dfault it is set to data.nc",
default="data.nc",
)
parser.add_argument(
"-l",
"--layer",
help="Soil layer to visualise. Default is all. Select between SM1 to SM5 or DD.",
default="all",
)
parser.add_argument("-s", "--window_start", help="Window start date YYYY-MM-DD.")
parser.add_argument("-e", "--window_end", help="Window end date YYYY-MM-DD.")
parser.add_argument(
"-y", "--historic_years", help="Number of years to go back in time.", default=2
)
parser.add_argument(
"-a",
"--agg_history",
help="Aggregation method to use for the historic data. Possible values: mean, median, max, min, std, var, sum.",
default="mean",
)
parser.add_argument(
"-g",
"--agg_window",
help="Aggregation method to use for the window range data. Possible values: mean, median, max, min, std, var, sum.",
default="mean",
)
parser.add_argument(
"-c",
"--comparison",
help="Comparison method to use for the window range data. Possible values: show, diff.",
default="show",
)
parser.add_argument(
"-o",
"--output",
help="Output directory to save the output files. Default is the input directory.",
)
parser.add_argument(
"-m",
"--match_raster",
help="Raster to match the output to. Default is the input raster.",
)
args = parser.parse_args()
# args.input ="/home/sahand/Projects/PIPE-3788 GRDC SoilWaterNow Deployment/work/v3/Arawa 2019-2023/c8/1af25ced023e58c46f4403a155210d/soilwatermodel v3"
# args.window_start = "2022-12-20"
# args.window_end = "2023-01-10"
# args.historic_years = 3
# args.agg_window = "mean"
# args.agg_history = "mean"
# args.comparison = "diff"
# args.layer = "SM2"
# args.output = None
try:
analyse(
input=args.input,
window_start=args.window_start,
window_end=args.window_end,
historic_years=args.historic_years,
agg_window=args.agg_window,
agg_history=args.agg_history,
comparison=args.comparison,
layer=args.layer,
output=args.output,
match_raster=args.match_raster,
)
except Exception as e:
vprint(
0,
V,
V_IGNORE,
Error="Failed to execute the main function:",
ErrorMessage=e,
)
traceback.print_exc()
raise e
|