File size: 20,966 Bytes
6b83428 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import datetime
import logging
import os
import traceback
from typing import Dict, List
import numpy as np
import plotly.express as px
import rasterio
from dash import Dash, Input, Output, State, dcc, html
from dash.exceptions import PreventUpdate
from libs.utils import setup_logging
from libs.utils import verbose as vprint
from scripts.analyse import analyse
setup_logging()
log = logging.getLogger(__name__)
CONFIG = {}
V = 1
V_IGNORE = [] # Debug, Warning, Error
# ===============================================================================
# Soil Moisture Comparison Tool App Layout
# ===============================================================================
colorscales = px.colors.named_colorscales()
# external JavaScript files
external_scripts = [
"https://www.google-analytics.com/analytics.js",
{"src": "https://cdn.polyfill.io/v2/polyfill.min.js"},
{
"src": "https://cdnjs.cloudflare.com/ajax/libs/lodash.js/4.17.10/lodash.core.js",
"integrity": "sha256-Qqd/EfdABZUcAxjOkMi8eGEivtdTkh3b65xCZL4qAQA=",
"crossorigin": "anonymous",
},
]
# external CSS stylesheets
external_stylesheets = [
"https://codepen.io/chriddyp/pen/bWLwgP.css",
{
"href": "https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css",
"rel": "stylesheet",
"integrity": "sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO",
"crossorigin": "anonymous",
},
]
app = Dash(
__name__,
external_scripts=external_scripts,
external_stylesheets=external_stylesheets,
title="Soil Moisture Comparison Tool",
update_title="Loading the tool...",
)
# farm_name = "Arawa"
# layer = "SM2"
today = datetime.datetime.today()
time_delta = datetime.timedelta(days=20)
FAIL_IMAGE = app.get_asset_url("icons/fail.png")
SUCCESS_IMAGE = app.get_asset_url("icons/success.png")
WAIT_IMAGE = app.get_asset_url("icons/wait.png")
current_working_directory = os.getcwd()
app.index_template = os.path.join(current_working_directory, "templates", "index.html")
# app.index_string = """
# <!DOCTYPE html>
# <html>
# <head>
# {%metas%}
# <title>{%title%}</title>
# {%favicon%}
# {%css%}
# </head>
# <body>
# <div class="col-12">
# <br>
# <h2>Soil Moisture Comparison Tool</h2>
# <br>
# <hr>
# </div>
# {%app_entry%}
# <footer>
# {%config%}
# {%scripts%}
# {%renderer%}
# </footer>
# <div class="col-12">
# <hr>
# <br>
# Copyright @ 2023 Sydney Informatics Hub (SIH)
# <br>
# </div>
# </body>
# </html>
# """
app.layout = html.Div(
[
# html.Div(
# className="app-header",
# children=[
# html.Div('Soil Moisture Comparison Tool', className="app-header--title")
# ]
# ),
dcc.Store(id="farm-name-session", storage_type="session"),
html.Div(
[
html.P(
"""This tool will use the produced datacubes to compare the soil moisture of a farm against historic data.
Please select the desired comaprison method and dates to make the comparison as in section A.
Then choose the visualisation in section B to see the results.""",
style={"font-size": "larger"},
),
html.Hr(),
html.H3("A"),
],
className="col-lg-12",
style={"padding-top": "1%", "padding-left": "1%"},
),
html.Div(
[
html.Div(
[
# html.P("Write farm name/ID:"),
dcc.Input(
id="farm-name",
type="text",
placeholder="Farm name",
style={"width": "80%"},
),
html.Img(
id="farm-image",
src=WAIT_IMAGE,
style={"width": "30px", "margin-left": "15px"},
),
],
className="col-lg-5",
# style = {'padding-top':'1%', 'padding-left':'1%'}
),
html.Div(
[
html.P(),
],
className="col-lg-7",
# style = {'padding-top':'1%', 'padding-left':'1%'}
),
],
className="row",
style={"padding-top": "1%", "padding-left": "1%"},
),
html.Div(
[
html.Div(
[
html.P("Select soil layer:"),
dcc.Dropdown(
id="layer-dropdown",
options=[
{"label": "SM1", "value": "SM1"},
{"label": "SM2", "value": "SM2"},
{"label": "SM3", "value": "SM3"},
{"label": "SM4", "value": "SM4"},
{"label": "SM5", "value": "SM5"},
{"label": "DD", "value": "DD"},
],
value="SM2",
),
],
className="col-lg-4",
style={"padding": "1%"},
),
html.Div(
[
html.P("Select the historic years to compare against:"),
dcc.Dropdown(
id="historic-dropdown",
options=[
{"label": year, "value": year} for year in range(1, 20)
],
value=2,
),
],
className="col-lg-4",
style={"padding": "1%"},
),
html.Div(
[
html.P("Select the most recent window of dates to analyse:"),
dcc.DatePickerRange(
id="window-select",
min_date_allowed=datetime.date(2000, 1, 1),
max_date_allowed=today.strftime("%Y-%m-%d"),
initial_visible_month=datetime.date(2023, 1, 1),
clearable=False,
display_format="YYYY-MM-DD",
start_date_placeholder_text="Start date",
end_date_placeholder_text="End date",
style={"width": "100%"},
),
],
className="col-lg-4",
style={"padding": "1%"},
),
],
className="row",
style={"padding-top": "1%"},
),
html.Div(
[
html.Div(
[
html.P("Select window aggregation method:"),
dcc.Dropdown(
id="w-aggregation-dropdown",
options=[
{"label": "Mean", "value": "mean"},
{"label": "Median", "value": "median"},
{"label": "Max", "value": "max"},
{"label": "Min", "value": "min"},
{"label": "Sum", "value": "sum"},
{"label": "std", "value": "std"},
{"label": "var", "value": "var"},
],
value="mean",
),
],
className="col-lg-6",
style={"padding": "1%"},
),
html.Div(
[
html.P("Select historic aggregation method:"),
dcc.Dropdown(
id="h-aggregation-dropdown",
options=[
{"label": "Mean", "value": "mean"},
{"label": "Median", "value": "median"},
{"label": "Max", "value": "max"},
{"label": "Min", "value": "min"},
{"label": "Sum", "value": "sum"},
{"label": "std", "value": "std"},
{"label": "var", "value": "var"},
],
value="mean",
),
],
className="col-lg-6",
style={"padding": "1%"},
),
],
className="row",
# style = {'padding-top':'1%'}
),
html.Div(
[
html.Button("Generate Images", id="generate-button"),
html.Br(),
html.Hr(),
],
className="col-lg-12",
style={"margin-bottom": "1%"},
),
html.Div(
[
html.H3("B"),
],
className="col-lg-12",
style={"padding-top": "1%", "padding-left": "1%"},
),
html.Div(
[
html.Div(
[
html.P("Select visualisation name:"),
dcc.Dropdown(id="visualisation-select"),
],
className="col-lg-6",
style={"padding": "1%"},
),
html.Div(
[
html.P("Select your palette:"),
dcc.Dropdown(
id="platter-dropdown", options=colorscales, value="viridis"
),
],
className="col-lg-6",
style={"padding": "1%"},
),
],
className="row",
# style = {'padding-top':'1%'}
),
html.Div(
[
html.Hr(),
html.H3("Results"),
dcc.Graph(id="graph"),
],
className="col-lg-12",
style={"padding-top": "1%"},
),
# html.Div(
# className="app-footer",
# children=[
# html.Div(f"Copyright @ {today.strftime('%Y')} Sydney Informatics Hub (SIH)", className="app-footer--copyright")
# ]
# ),
],
className="container-fluid",
)
# ==================================================================================================
# Functions
# ==================================================================================================
def find_analyses(path):
"""Find all the analysis files in a directory.
Parameters
----------
path: str
Path to the directory containing the analysis files
Returns
-------
files: list
List of analysis files
"""
files = [f for f in os.listdir(path) if f.endswith(".tif")]
return files
def open_image(path):
"""Open a raster image and return the data and coordinates.
Parameters
----------
path: str
path to the raster image
Returns
-------
band1: np.array
The raster data
lons: np.array
The longitude coordinates
lats: np.array
The latitude coordinates
"""
with rasterio.open(path) as src:
band1 = src.read(1)
print("Band1 has shape", band1.shape)
height = band1.shape[0]
width = band1.shape[1]
cols, rows = np.meshgrid(np.arange(width), np.arange(height))
xs, ys = rasterio.transform.xy(src.transform, rows, cols)
lons = np.array(xs)
lats = np.array(ys)
return band1, lons, lats
def perform_analysis(
input,
window_start,
window_end,
historic_years: int,
layer: str,
match_raster: str = None,
output: str = None,
agg_history: str = "mean",
agg_window: str = "mean",
comparison: str = "diff",
**args,
) -> Dict[str, str]:
"""Perform the analysis.
This is a wrapper function for the analysis module. It takes the input parameters and passes them to the analysis module.
Parameters
----------
input : str
path to the input data
window_start : str
start date of the window
window_end : str
end date of the window
historic_years : int
number of years to use for the historic data
layer : str
layer to use for the analysis
match_raster : str, optional
path to the raster to match the output to, by default None
output : str, optional
path to the output file, by default None
agg_history : str, optional
aggregation method for the historic data, by default "mean"
agg_window : str, optional
aggregation method for the window data, by default "mean"
comparison : str, optional
comparison method for the window and historic data, by default "diff"
Returns
-------
files: dict
Dict of analysis files
"""
files = analyse(
input=input,
window_start=window_start,
window_end=window_end,
historic_years=historic_years,
agg_window=agg_window,
agg_history=agg_history,
comparison=comparison,
layer=layer,
output=output,
match_raster=match_raster,
)
return files
# ====================================================================================================
# Callbacks
# ====================================================================================================
@app.callback(
[
Output("farm-name-session", "data"),
Output("farm-image", "src"),
],
[Input("farm-name", "value"), State("farm-name-session", "data")],
)
def update_session(farm_name, session):
session = farm_name
if farm_name is None or farm_name == "":
session = ""
image = WAIT_IMAGE
else:
print(f"Getting some data about farm: {farm_name}")
# if the path does not exist, do not update the session
real_path = INPUT.format(farm_name)
print(f"Checking {real_path}")
if os.path.exists(real_path):
session = farm_name
image = SUCCESS_IMAGE
else:
session = ""
image = FAIL_IMAGE
print(f"\n\nSession updated to {session}")
print(f"Image updated to {image}\n\n")
return session, image
@app.callback(
Output("farm-name", "value"),
Input("farm-name-session", "modified_timestamp"),
State("farm-name-session", "data"),
)
def display_name_from_session(timestamp, name):
print(f"Updating the farm name from the session: {name}")
if timestamp is not None:
return name
else:
return ""
@app.callback(
Output("visualisation-select", "options"),
# Input("farm-name", "value"),
Input("layer-dropdown", "value"),
Input("window-select", "start_date"),
Input("window-select", "end_date"),
Input("historic-dropdown", "value"),
Input("w-aggregation-dropdown", "value"),
Input("h-aggregation-dropdown", "value"),
Input("generate-button", "n_clicks"),
State("farm-name-session", "data"),
)
def get_analysis(
layer, window_start, window_end, historic_years, w_agg, h_agg, n_clicks, farm_name
) -> List[Dict[str, str]]:
"""Get the analysis files and return them as a list of dicts.
Parameters
----------
layer : str
layer to use for the analysis
window_start : str
start date of the window
window_end : str
end date of the window
historic_years : int
number of years to use for the historic data
w_agg : str
aggregation method for the window data
h_agg : str
aggregation method for the historic data
n_clicks : int
number of times the generate button has been clicked
Returns
-------
files : list
list of dicts of analysis files
"""
print("\nAnalysis callback triggered")
if n_clicks == 0 or n_clicks is None:
raise PreventUpdate
path = f"/home/sahand/Data/results_default/{farm_name}/soilwatermodel"
# window_start = datetime.datetime.strptime(window_start, '%Y-%m-%d')
# window_end = datetime.datetime.strptime(window_end, '%Y-%m-%d')
print(f"\nPath: {path}\n")
files = perform_analysis(
input=path,
window_start=window_start,
window_end=window_end,
historic_years=historic_years,
layer=layer,
agg_window=w_agg,
agg_history=h_agg,
comparison="diff",
output=None,
match_raster=None,
)
print(path)
print(
f"n_clicks: {n_clicks}\n"
+ f"window_start: {window_start}\n"
+ f"window_end: {window_end}\n"
+ f"historic_years: {historic_years}\n"
+ f"layer: {layer}\n"
+ f"agg_window: {w_agg}\n"
+ f"agg_history: {h_agg}\n"
+ "comparison: 'diff'\n"
+ f"output: {None}\n"
+ f"match_raster: {None}\n"
)
print(files)
files = {
i: [
" ".join(files[i].split("/")[-1].split(".")[0].split("-")).capitalize(),
files[i],
]
for i in files
}
print(files)
options = [{"label": files[i][0], "value": files[i][1]} for i in files]
return options
@app.callback(
Output("graph", "figure"),
Input("visualisation-select", "value"),
Input("platter-dropdown", "value"),
)
def change_colorscale(file, palette):
"""Display the selected visualisation and change the colorscale of the
visualisation.
Parameters
----------
file : str
path to the visualisation file
palette : str
name of the colorscale to use
Returns
-------
fig : plotly.graph_objects.Figure
plotly figure object
"""
band1, lons_a, lats_a = open_image(file)
# Get the second dimension of the lons
lats = lats_a[:, 0]
lons = lons_a[0, :]
print(lons.shape, lons)
print(lats.shape, lats)
print(band1.shape, band1)
fig = px.imshow(band1, x=lons, y=lats, color_continuous_scale=palette)
fig.update(
data=[
{
"customdata": np.stack((band1, lats_a, lons_a), axis=-1),
"hovertemplate": "<b>SM</b>: %{customdata[0]}<br>"
+ "<b>Lat</b>: %{customdata[1]}<br>"
+ "<b>Lon</b>: %{customdata[2]}<br>"
+ "<extra></extra>",
}
]
)
print("Render successful")
return fig
# ==============================================================================
# Main
# ==============================================================================
if __name__ == "__main__":
# Load Configs
parser = argparse.ArgumentParser(
description="Download rainfall data from Google Earth Engine for a range of dates.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"-i",
"--input",
help="Absolute or relative path to the netcdf data directory for each farm. Should be in this format: '/path/to/farm/{}/soilwatermodel'",
default=os.path.join(
os.path.expanduser("~"), "Data/results_default/{}/soilwatermodel"
),
)
args = parser.parse_args()
INPUT = args.input
try:
app.run_server(debug=True)
except Exception as e:
vprint(
0,
V,
V_IGNORE,
Error="Failed to execute the main function:",
ErrorMessage=e,
)
traceback.print_exc()
raise e
|