sahanes commited on
Commit
e532a6f
·
verified ·
1 Parent(s): e9ecd21

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -0
app.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import pandas as pd
4
+
5
+ from langchain.embeddings.openai import OpenAIEmbeddings
6
+ from langchain.text_splitter import CharacterTextSplitter
7
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
8
+ from langchain.vectorstores import Chroma
9
+ from langchain.document_loaders import TextLoader
10
+ from langchain.chat_models import ChatOpenAI
11
+ from langchain import PromptTemplate
12
+ from langchain.chains import LLMChain
13
+ from langchain.chains.qa_with_sources import load_qa_with_sources_chain
14
+ from langchain.llms import OpenAI
15
+ from langchain.vectorstores import FAISS
16
+
17
+
18
+
19
+
20
+ db = pd.read_pickle('index.pkl')
21
+
22
+ #-----------------------------------------------------------------------------
23
+ def get_response_from_query(db, query, k=3):
24
+
25
+ docs = db.similarity_search(query, k=k)
26
+
27
+ docs_page_content = " ".join([d.page_content for d in docs])
28
+
29
+ # llm = BardLLM()
30
+ llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k",temperature=0)
31
+
32
+ prompt = PromptTemplate(
33
+ input_variables=["question", "docs"],
34
+ template="""
35
+ A bot that is open to discussions about different cultural, philosophical and political exchanges. I will use do different analysis to the articles provided to me. Stay truthful and if you weren't provided any resources give your oppinion only.
36
+ Answer the following question: {question}
37
+ By searching the following articles: {docs}
38
+
39
+ Only use the factual information from the documents. Make sure to mention key phrases from the articles.
40
+
41
+ If you feel like you don't have enough information to answer the question, say "I don't know".
42
+
43
+ """,
44
+ )
45
+
46
+ chain = LLMChain(llm=llm, prompt=prompt)
47
+ # chain = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, prompt=prompt,
48
+ # chain_type="stuff", retriever=db.as_retriever(), return_source_documents=True)
49
+
50
+ response = chain.run(question=query, docs=docs_page_content,return_source_documents=True)
51
+ r_text = str(response)
52
+
53
+ ##evaluation part
54
+
55
+ prompt_eval = PromptTemplate(
56
+ input_variables=["answer", "docs"],
57
+ template="""
58
+ You job is to evaluate if the response to a given context is faithful.
59
+
60
+ for the following: {answer}
61
+ By searching the following article: {docs}
62
+
63
+ Give a reason why they are similar or not, start with a Yes or a No.
64
+ """,
65
+ )
66
+
67
+ chain_part_2 = LLMChain(llm=llm, prompt=prompt_eval)
68
+
69
+
70
+ evals = chain_part_2.run(answer=r_text, docs=docs_page_content)
71
+
72
+ return response,docs,evals
73
+
74
+ def greet(query):
75
+
76
+ answer,sources,evals = get_response_from_query(db,query,2)
77
+ return answer,sources,evals
78
+
79
+ demo = gr.Interface(fn=greet, title="cicero-semantic-search", inputs="text",
80
+ outputs=[gr.components.Textbox(lines=3, label="Response"),
81
+ gr.components.Textbox(lines=3, label="Source"),
82
+ gr.components.Textbox(lines=3, label="Evaluation")])
83
+
84
+ demo.launch(share=True)
85
+
86
+
87
+