import gradio as gr import pandas as pd import pickle from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma #from langchain.vectorstores import Chroma from langchain_community.document_loaders import TextLoader from langchain_community.chat_models import ChatOpenAI from langchain import PromptTemplate from langchain.chains import LLMChain from langchain_community.llms import OpenAI from langchain_community.vectorstores.faiss import FAISS #from langchain.vectorstores import FAISS # db = faiss.read_index('index.pkl') #db = pickle.load('index.pkl') with open('index.pickle', 'rb') as pkl: doc_embedding = pickle.load(pkl) db.save_local("faiss_index") db=FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization=True) #----------------------------------------------------------------------------- def get_response_from_query(db, query, k=3): docs = db.similarity_search(query, k=k) docs_page_content = " ".join([d.page_content for d in docs]) # llm = BardLLM() llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k",temperature=0) prompt = PromptTemplate( input_variables=["question", "docs"], template=""" A bot that is open to discussions about different cultural, philosophical and political exchanges. I will use do different analysis to the articles provided to me. Stay truthful and if you weren't provided any resources give your oppinion only. Answer the following question: {question} By searching the following articles: {docs} Only use the factual information from the documents. Make sure to mention key phrases from the articles. If you feel like you don't have enough information to answer the question, say "I don't know". """, ) chain = LLMChain(llm=llm, prompt=prompt) # chain = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, prompt=prompt, # chain_type="stuff", retriever=db.as_retriever(), return_source_documents=True) response = chain.run(question=query, docs=docs_page_content,return_source_documents=True) r_text = str(response) ##evaluation part prompt_eval = PromptTemplate( input_variables=["answer", "docs"], template=""" You job is to evaluate if the response to a given context is faithful. for the following: {answer} By searching the following article: {docs} Give a reason why they are similar or not, start with a Yes or a No. """, ) chain_part_2 = LLMChain(llm=llm, prompt=prompt_eval) evals = chain_part_2.run(answer=r_text, docs=docs_page_content) return response,docs,evals def greet(query): answer,sources,evals = get_response_from_query(db,query,2) return answer,sources,evals demo = gr.Interface(fn=greet, title="cicero-semantic-search", inputs="text", outputs=[gr.components.Textbox(lines=3, label="Response"), gr.components.Textbox(lines=3, label="Source"), gr.components.Textbox(lines=3, label="Evaluation")]) demo.launch(share=True, debug=True)