Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
4 |
+
|
5 |
+
HF_TOKEN = os.environ.get('HF_TOKEN')
|
6 |
+
|
7 |
+
model_checkpoint = "besijar/dspa_review_classification"
|
8 |
+
tokeniser = AutoTokenizer.from_pretrained(model_checkpoint, use_auth_token=HF_TOKEN)
|
9 |
+
model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint, use_auth_token=HF_TOKEN)
|
10 |
+
|
11 |
+
example_review = "Tully's House Blend is the perfect K-Cup for me. Sure, I occasionally enjoy the special flavors.....Mocha, Italian roast, French vanilla, but my favorite 'go-to'coffee is House Blend. Wakes me up in the morning with it's coffee house full hearty taste."
|
12 |
+
|
13 |
+
def review_classify(review):
|
14 |
+
review = tokeniser.encode(review)
|
15 |
+
review = model.predict([review])
|
16 |
+
return int(review.logits.argmax())
|
17 |
+
|
18 |
+
iface = gr.Interface(review_classify,
|
19 |
+
title="Review Classification using DistilRoBERTa",
|
20 |
+
inputs=[gr.Text(label="Review")],
|
21 |
+
outputs=[gr.Number(label="Rating", precision=0)],
|
22 |
+
examples=[example_review])
|
23 |
+
iface.launch()
|