Delete app.py
Browse files
app.py
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
import warnings
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
import seaborn as sns
|
6 |
-
import torch
|
7 |
-
from torch import cuda, nn
|
8 |
-
from torch.nn import functional as F
|
9 |
-
|
10 |
-
warnings.filterwarnings("ignore")
|
11 |
-
|
12 |
-
device = 'cuda' if cuda.is_available() else 'cpu'
|
13 |
-
|
14 |
-
|
15 |
-
class Attention(nn.Module):
|
16 |
-
def __init__(self, in_features, *args, bias=True, **kwargs):
|
17 |
-
super(Attention, self).__init__(*args, **kwargs)
|
18 |
-
self.bias = bias
|
19 |
-
self.W = nn.Parameter(torch.randn(in_features, in_features))
|
20 |
-
if self.bias:
|
21 |
-
self.b = nn.Parameter(torch.randn(in_features))
|
22 |
-
self.u = nn.Parameter(torch.randn(in_features))
|
23 |
-
self.tanh = nn.Tanh()
|
24 |
-
self.softmax = nn.Softmax(dim=-1)
|
25 |
-
|
26 |
-
def forward(self, x):
|
27 |
-
uit = torch.matmul(x, self.W)
|
28 |
-
if self.bias:
|
29 |
-
uit += self.b
|
30 |
-
ait = torch.matmul(self.tanh(uit), self.u)
|
31 |
-
attention = self.softmax(ait)
|
32 |
-
return attention
|
33 |
-
|
34 |
-
|
35 |
-
class GenderClassifierWithAttention(nn.Module):
|
36 |
-
def __init__(self, input_size, hidden_size, embed_size, *args, **kwargs):
|
37 |
-
super(GenderClassifierWithAttention, self).__init__(*args, **kwargs)
|
38 |
-
self.hid_dim = hidden_size
|
39 |
-
|
40 |
-
# embedding layer
|
41 |
-
self.embedding = nn.Embedding(
|
42 |
-
num_embeddings=input_size, embedding_dim=embed_size)
|
43 |
-
|
44 |
-
# attention layer
|
45 |
-
self.attention = Attention(self.hid_dim * 2)
|
46 |
-
|
47 |
-
# LSTM layer
|
48 |
-
self.lstm = nn.LSTM(embed_size, hidden_size=self.hid_dim,
|
49 |
-
num_layers=2, bidirectional=True, batch_first=True)
|
50 |
-
|
51 |
-
# dropout layers
|
52 |
-
self.dropout1 = nn.Dropout(p=0.4)
|
53 |
-
self.dropout2 = nn.Dropout(p=0.4)
|
54 |
-
|
55 |
-
# normalization layers
|
56 |
-
self.batch_norm1 = nn.BatchNorm1d(num_features=15)
|
57 |
-
self.batch_norm2 = nn.BatchNorm1d(num_features=7)
|
58 |
-
self.layer_norm = nn.LayerNorm(40)
|
59 |
-
|
60 |
-
# linear layers
|
61 |
-
self.fc1 = nn.Linear(in_features=self.hid_dim * 2, out_features=15)
|
62 |
-
self.fc2 = nn.Linear(in_features=15, out_features=7)
|
63 |
-
self.fc3 = nn.Linear(in_features=7, out_features=2)
|
64 |
-
|
65 |
-
# activation functions
|
66 |
-
self.tanh = nn.Tanh()
|
67 |
-
self.relu = nn.ReLU()
|
68 |
-
|
69 |
-
def forward(self, x):
|
70 |
-
x = self.embedding(x).float()
|
71 |
-
|
72 |
-
out, (h, c) = self.lstm(x)
|
73 |
-
out = self.layer_norm(out)
|
74 |
-
attention = self.attention(self.tanh(out))
|
75 |
-
x = torch.einsum('ijk,ij->ik', out, attention)
|
76 |
-
|
77 |
-
x = self.tanh(self.fc1(x))
|
78 |
-
x = self.batch_norm1(x)
|
79 |
-
x = self.dropout1(x)
|
80 |
-
|
81 |
-
x = self.tanh(self.fc2(x))
|
82 |
-
x = self.batch_norm2(x)
|
83 |
-
x = self.dropout2(x)
|
84 |
-
|
85 |
-
x = self.fc3(x)
|
86 |
-
return x, attention
|
87 |
-
|
88 |
-
|
89 |
-
def get_attention(model):
|
90 |
-
def inner(name):
|
91 |
-
import string
|
92 |
-
char_stoi = {val: key for key, val in dict(
|
93 |
-
enumerate(["<PAD>"] + list(string.ascii_lowercase))).items()}
|
94 |
-
|
95 |
-
name_mapped = [char_stoi[char] for char in name.lower()]
|
96 |
-
|
97 |
-
probs, attention = model(torch.tensor([name_mapped]).to(device))
|
98 |
-
probs = F.softmax(probs, dim=-1)
|
99 |
-
probs_dict = dict(
|
100 |
-
zip(["female", "male"], probs.cpu().detach().numpy().flatten().tolist()))
|
101 |
-
|
102 |
-
fig, ax = plt.subplots(nrows=1, ncols=1)
|
103 |
-
_ = sns.barplot(x=list(range(attention.shape[1])),
|
104 |
-
y=attention.squeeze().cpu().detach().numpy(),
|
105 |
-
color="#1FCECB", ax=ax)
|
106 |
-
_ = ax.set_xticklabels(list(name))
|
107 |
-
|
108 |
-
return probs_dict, fig
|
109 |
-
|
110 |
-
return inner
|
111 |
-
|
112 |
-
|
113 |
-
if __name__ == "__main__":
|
114 |
-
model = torch.load("lstm_attention.pt", map_location=device)
|
115 |
-
interface = gr.Interface(get_attention(model),
|
116 |
-
inputs="text", outputs=[gr.outputs.Label(label="gender"), gr.outputs.Image(type="plot", label="attention")],
|
117 |
-
title="Visualizing Attention in Gender Classification",
|
118 |
-
examples=["annabella", "ewart",
|
119 |
-
"blancha", "bronson"], allow_flagging="never").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|