import os import torch from constants import CHROMA_SETTINGS from langchain.document_loaders import PDFMinerLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from transformers import AutoTokenizer, AutoModelForSeq2SeqLM checkpoint = "MBZUAI/LaMini-T5-738M" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.float32) persist_directory = "db" def main(): for root, dirs, files in os.walk("docs"): for file in files: if file.endswith(".pdf"): print(f"Ingesting file: {file}") loader = PDFMinerLoader(os.path.join(root, file)) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) texts = text_splitter.split_documents(documents) def embedding_function(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(model.device) with torch.no_grad(): embeddings = model.encoder(**inputs).last_hidden_state.mean(dim=1).cpu().numpy() return embeddings db = Chroma.from_documents(texts, embedding_function=embedding_function, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS) db.persist() db = None if __name__ == "__main__": main()