File size: 8,621 Bytes
19a149b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import json
import cv2
import numpy as np
import os
from torch.utils.data import Dataset
from PIL import Image
import cv2
from .data_utils import * 
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
import albumentations as A


class BaseDataset(Dataset):
    def __init__(self):
        image_mask_dict = {}
        self.data = []

    def __len__(self):
        # We adjust the ratio of different dataset by setting the length.
        pass

    
    def aug_data_back(self, image):
        transform = A.Compose([
            A.ColorJitter(p=0.5, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5),
            A.ChannelShuffle()
            ])
        transformed = transform(image=image.astype(np.uint8))
        transformed_image = transformed["image"]
        return transformed_image
    
    def aug_data_mask(self, image, mask):
        transform = A.Compose([
            A.HorizontalFlip(p=0.5),
            A.RandomBrightnessContrast(p=0.5),
            #A.Rotate(limit=20, border_mode=cv2.BORDER_CONSTANT,  value=(0,0,0)),
            ])

        transformed = transform(image=image.astype(np.uint8), mask = mask)
        transformed_image = transformed["image"]
        transformed_mask = transformed["mask"]
        return transformed_image, transformed_mask


    def check_region_size(self, image, yyxx, ratio, mode = 'max'):
        pass_flag = True
        H,W = image.shape[0], image.shape[1]
        H,W = H * ratio, W * ratio
        y1,y2,x1,x2 = yyxx
        h,w = y2-y1,x2-x1
        if mode == 'max':
            if h > H or w > W:
                pass_flag = False
        elif mode == 'min':
            if h < H or w < W:
                pass_flag = False
        return pass_flag


    def __getitem__(self, idx):
        while(True):
            try:
                idx = np.random.randint(0, len(self.data)-1)
                item = self.get_sample(idx)
                return item
            except:
                idx = np.random.randint(0, len(self.data)-1)
                
    def get_sample(self, idx):
        # Implemented for each specific dataset
        pass

    def sample_timestep(self, max_step =1000):
        if np.random.rand() < 0.3:
            step = np.random.randint(0,max_step)
            return np.array([step])

        if self.dynamic == 1:
            # coarse videos
            step_start = max_step // 2
            step_end = max_step
        elif self.dynamic == 0:
            # static images
            step_start = 0 
            step_end = max_step // 2
        else:
            # fine multi-view images/videos/3Ds
            step_start = 0
            step_end = max_step
        step = np.random.randint(step_start, step_end)
        return np.array([step])

    def check_mask_area(self, mask):
        H,W = mask.shape[0], mask.shape[1]
        ratio = mask.sum() / (H * W)
        if ratio > 0.8 * 0.8  or ratio < 0.1 * 0.1:
            return False
        else:
            return True 
    

    def process_pairs(self, ref_image, ref_mask, tar_image, tar_mask, max_ratio = 0.8):
        assert mask_score(ref_mask) > 0.90
        assert self.check_mask_area(ref_mask) == True
        assert self.check_mask_area(tar_mask)  == True

        # ========= Reference ===========
        '''
        # similate the case that the mask for reference object is coarse. Seems useless :(

        if np.random.uniform(0, 1) < 0.7: 
            ref_mask_clean = ref_mask.copy()
            ref_mask_clean = np.stack([ref_mask_clean,ref_mask_clean,ref_mask_clean],-1)
            ref_mask = perturb_mask(ref_mask, 0.6, 0.9)
            
            # select a fake bg to avoid the background leakage
            fake_target = tar_image.copy()
            h,w = ref_image.shape[0], ref_image.shape[1]
            fake_targe = cv2.resize(fake_target, (w,h))
            fake_back = np.fliplr(np.flipud(fake_target))
            fake_back = self.aug_data_back(fake_back)
            ref_image = ref_mask_clean * ref_image + (1-ref_mask_clean) * fake_back
        '''

        # Get the outline Box of the reference image
        ref_box_yyxx = get_bbox_from_mask(ref_mask)
        assert self.check_region_size(ref_mask, ref_box_yyxx, ratio = 0.10, mode = 'min') == True
        
        # Filtering background for the reference image
        ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
        masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3)

        y1,y2,x1,x2 = ref_box_yyxx
        masked_ref_image = masked_ref_image[y1:y2,x1:x2,:]
        ref_mask = ref_mask[y1:y2,x1:x2]

        ratio = np.random.randint(11, 15) / 10 
        masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
        ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)

        # Padding reference image to square and resize to 224
        masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False)
        masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), (224,224) ).astype(np.uint8)

        ref_mask_3 = pad_to_square(ref_mask_3 * 255, pad_value = 0, random = False)
        ref_mask_3 = cv2.resize(ref_mask_3.astype(np.uint8), (224,224) ).astype(np.uint8)
        ref_mask = ref_mask_3[:,:,0]

        # Augmenting reference image
        #masked_ref_image_aug = self.aug_data(masked_ref_image) 
        
        # Getting for high-freqency map
        masked_ref_image_compose, ref_mask_compose =  self.aug_data_mask(masked_ref_image, ref_mask) 
        masked_ref_image_aug = masked_ref_image_compose.copy()

        ref_mask_3 = np.stack([ref_mask_compose,ref_mask_compose,ref_mask_compose],-1)
        ref_image_collage = sobel(masked_ref_image_compose, ref_mask_compose/255)
        

        # ========= Training Target ===========
        tar_box_yyxx = get_bbox_from_mask(tar_mask)
        tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=[1.1,1.2]) #1.1  1.3
        assert self.check_region_size(tar_mask, tar_box_yyxx, ratio = max_ratio, mode = 'max') == True
        
        # Cropping around the target object 
        tar_box_yyxx_crop =  expand_bbox(tar_image, tar_box_yyxx, ratio=[1.3, 3.0])   
        tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
        y1,y2,x1,x2 = tar_box_yyxx_crop
        cropped_target_image = tar_image[y1:y2,x1:x2,:]
        cropped_tar_mask = tar_mask[y1:y2,x1:x2]
        tar_box_yyxx = box_in_box(tar_box_yyxx, tar_box_yyxx_crop)
        y1,y2,x1,x2 = tar_box_yyxx

        # Prepairing collage image
        ref_image_collage = cv2.resize(ref_image_collage.astype(np.uint8), (x2-x1, y2-y1))
        ref_mask_compose = cv2.resize(ref_mask_compose.astype(np.uint8), (x2-x1, y2-y1))
        ref_mask_compose = (ref_mask_compose > 128).astype(np.uint8)

        collage = cropped_target_image.copy() 
        collage[y1:y2,x1:x2,:] = ref_image_collage

        collage_mask = cropped_target_image.copy() * 0.0
        collage_mask[y1:y2,x1:x2,:] = 1.0

        if np.random.uniform(0, 1) < 0.7: 
            cropped_tar_mask = perturb_mask(cropped_tar_mask)
            collage_mask = np.stack([cropped_tar_mask,cropped_tar_mask,cropped_tar_mask],-1)

        H1, W1 = collage.shape[0], collage.shape[1]

        cropped_target_image = pad_to_square(cropped_target_image, pad_value = 0, random = False).astype(np.uint8)
        collage = pad_to_square(collage, pad_value = 0, random = False).astype(np.uint8)
        collage_mask = pad_to_square(collage_mask, pad_value = 2, random = False).astype(np.uint8)
        H2, W2 = collage.shape[0], collage.shape[1]

        cropped_target_image = cv2.resize(cropped_target_image.astype(np.uint8), (512,512)).astype(np.float32)
        collage = cv2.resize(collage.astype(np.uint8), (512,512)).astype(np.float32)
        collage_mask  = cv2.resize(collage_mask.astype(np.uint8), (512,512),  interpolation = cv2.INTER_NEAREST).astype(np.float32)
        collage_mask[collage_mask == 2] = -1
        
        # Prepairing dataloader items
        masked_ref_image_aug = masked_ref_image_aug  / 255 
        cropped_target_image = cropped_target_image / 127.5 - 1.0
        collage = collage / 127.5 - 1.0 
        collage = np.concatenate([collage, collage_mask[:,:,:1]  ] , -1)
        
        item = dict(
                ref=masked_ref_image_aug.copy(), 
                jpg=cropped_target_image.copy(), 
                hint=collage.copy(), 
                extra_sizes=np.array([H1, W1, H2, W2]), 
                tar_box_yyxx_crop=np.array(tar_box_yyxx_crop) 
                ) 
        return item