Spaces:
Runtime error
Runtime error
import os | |
import sys | |
#sys.path.append('.') | |
import cv2 | |
import einops | |
import numpy as np | |
import torch | |
import random | |
import gradio as gr | |
import albumentations as A | |
from PIL import Image | |
import torchvision.transforms as T | |
from mydatasets.data_utils import * | |
from cldm.model import create_model, load_state_dict | |
from cldm.ddim_hacked import DDIMSampler | |
from omegaconf import OmegaConf | |
from cldm.hack import disable_verbosity, enable_sliced_attention | |
from huggingface_hub import snapshot_download | |
snapshot_download(repo_id="xichenhku/AnyDoor_models", local_dir="./AnyDoor_models") | |
snapshot_download(repo_id="xichenhku/mask_refine", local_dir="./mask_refine") | |
cv2.setNumThreads(0) | |
cv2.ocl.setUseOpenCL(False) | |
save_memory = False | |
disable_verbosity() | |
if save_memory: | |
enable_sliced_attention() | |
config = OmegaConf.load('./configs/demo.yaml') | |
model_ckpt = config.pretrained_model | |
model_config = config.config_file | |
use_interactive_seg = config.config_file | |
model = create_model(model_config ).cpu() | |
model.load_state_dict(load_state_dict(model_ckpt, location='cuda')) | |
model = model.cuda() | |
ddim_sampler = DDIMSampler(model) | |
if use_interactive_seg: | |
from iseg.coarse_mask_refine_util import BaselineModel | |
model_path = './mask_refine/coarse_mask_refine.pth' | |
iseg_model = BaselineModel().eval() | |
weights = torch.load(model_path , map_location='cpu')['state_dict'] | |
iseg_model.load_state_dict(weights, strict= True) | |
def crop_back( pred, tar_image, extra_sizes, tar_box_yyxx_crop): | |
H1, W1, H2, W2 = extra_sizes | |
y1,y2,x1,x2 = tar_box_yyxx_crop | |
pred = cv2.resize(pred, (W2, H2)) | |
m = 3 # maigin_pixel | |
if W1 == H1: | |
tar_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m] | |
return tar_image | |
if W1 < W2: | |
pad1 = int((W2 - W1) / 2) | |
pad2 = W2 - W1 - pad1 | |
pred = pred[:,pad1: -pad2, :] | |
else: | |
pad1 = int((H2 - H1) / 2) | |
pad2 = H2 - H1 - pad1 | |
pred = pred[pad1: -pad2, :, :] | |
tar_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m] | |
return tar_image | |
def inference_single_image(ref_image, | |
ref_mask, | |
tar_image, | |
tar_mask, | |
strength, | |
ddim_steps, | |
scale, | |
seed, | |
enable_shape_control | |
): | |
raw_background = tar_image.copy() | |
item = process_pairs(ref_image, ref_mask, tar_image, tar_mask, enable_shape_control = enable_shape_control) | |
ref = item['ref'] | |
hint = item['hint'] | |
num_samples = 1 | |
control = torch.from_numpy(hint.copy()).float().cuda() | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
clip_input = torch.from_numpy(ref.copy()).float().cuda() | |
clip_input = torch.stack([clip_input for _ in range(num_samples)], dim=0) | |
clip_input = einops.rearrange(clip_input, 'b h w c -> b c h w').clone() | |
H,W = 512,512 | |
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning( clip_input )]} | |
un_cond = {"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([torch.zeros((1,3,224,224))] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
model.control_scales = ([strength] * 13) | |
samples, _ = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=0, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy() | |
result = x_samples[0][:,:,::-1] | |
result = np.clip(result,0,255) | |
pred = x_samples[0] | |
pred = np.clip(pred,0,255)[1:,:,:] | |
sizes = item['extra_sizes'] | |
tar_box_yyxx_crop = item['tar_box_yyxx_crop'] | |
tar_image = crop_back(pred, tar_image, sizes, tar_box_yyxx_crop) | |
# keep background unchanged | |
y1,y2,x1,x2 = item['tar_box_yyxx'] | |
raw_background[y1:y2, x1:x2, :] = tar_image[y1:y2, x1:x2, :] | |
return raw_background | |
def process_pairs(ref_image, ref_mask, tar_image, tar_mask, max_ratio = 0.8, enable_shape_control = False): | |
# ========= Reference =========== | |
# ref expand | |
ref_box_yyxx = get_bbox_from_mask(ref_mask) | |
# ref filter mask | |
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1) | |
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3) | |
y1,y2,x1,x2 = ref_box_yyxx | |
masked_ref_image = masked_ref_image[y1:y2,x1:x2,:] | |
ref_mask = ref_mask[y1:y2,x1:x2] | |
ratio = np.random.randint(11, 15) / 10 #11,13 | |
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio) | |
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1) | |
# to square and resize | |
masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False) | |
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), (224,224) ).astype(np.uint8) | |
ref_mask_3 = pad_to_square(ref_mask_3 * 255, pad_value = 0, random = False) | |
ref_mask_3 = cv2.resize(ref_mask_3.astype(np.uint8), (224,224) ).astype(np.uint8) | |
ref_mask = ref_mask_3[:,:,0] | |
# collage aug | |
masked_ref_image_compose, ref_mask_compose = masked_ref_image, ref_mask | |
ref_mask_3 = np.stack([ref_mask_compose,ref_mask_compose,ref_mask_compose],-1) | |
ref_image_collage = sobel(masked_ref_image_compose, ref_mask_compose/255) | |
# ========= Target =========== | |
tar_box_yyxx = get_bbox_from_mask(tar_mask) | |
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=[1.1,1.2]) #1.1 1.3 | |
tar_box_yyxx_full = tar_box_yyxx | |
# crop | |
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=[1.3, 3.0]) | |
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box | |
y1,y2,x1,x2 = tar_box_yyxx_crop | |
cropped_target_image = tar_image[y1:y2,x1:x2,:] | |
cropped_tar_mask = tar_mask[y1:y2,x1:x2] | |
tar_box_yyxx = box_in_box(tar_box_yyxx, tar_box_yyxx_crop) | |
y1,y2,x1,x2 = tar_box_yyxx | |
# collage | |
ref_image_collage = cv2.resize(ref_image_collage.astype(np.uint8), (x2-x1, y2-y1)) | |
ref_mask_compose = cv2.resize(ref_mask_compose.astype(np.uint8), (x2-x1, y2-y1)) | |
ref_mask_compose = (ref_mask_compose > 128).astype(np.uint8) | |
collage = cropped_target_image.copy() | |
collage[y1:y2,x1:x2,:] = ref_image_collage | |
collage_mask = cropped_target_image.copy() * 0.0 | |
collage_mask[y1:y2,x1:x2,:] = 1.0 | |
if enable_shape_control: | |
collage_mask = np.stack([cropped_tar_mask,cropped_tar_mask,cropped_tar_mask],-1) | |
# the size before pad | |
H1, W1 = collage.shape[0], collage.shape[1] | |
cropped_target_image = pad_to_square(cropped_target_image, pad_value = 0, random = False).astype(np.uint8) | |
collage = pad_to_square(collage, pad_value = 0, random = False).astype(np.uint8) | |
collage_mask = pad_to_square(collage_mask, pad_value = 2, random = False).astype(np.uint8) | |
# the size after pad | |
H2, W2 = collage.shape[0], collage.shape[1] | |
cropped_target_image = cv2.resize(cropped_target_image.astype(np.uint8), (512,512)).astype(np.float32) | |
collage = cv2.resize(collage.astype(np.uint8), (512,512)).astype(np.float32) | |
collage_mask = cv2.resize(collage_mask.astype(np.uint8), (512,512), interpolation = cv2.INTER_NEAREST).astype(np.float32) | |
collage_mask[collage_mask == 2] = -1 | |
masked_ref_image = masked_ref_image / 255 | |
cropped_target_image = cropped_target_image / 127.5 - 1.0 | |
collage = collage / 127.5 - 1.0 | |
collage = np.concatenate([collage, collage_mask[:,:,:1] ] , -1) | |
item = dict(ref=masked_ref_image.copy(), jpg=cropped_target_image.copy(), hint=collage.copy(), | |
extra_sizes=np.array([H1, W1, H2, W2]), | |
tar_box_yyxx_crop=np.array( tar_box_yyxx_crop ), | |
tar_box_yyxx=np.array(tar_box_yyxx_full), | |
) | |
return item | |
ref_dir='./examples/Gradio/FG' | |
image_dir='./examples/Gradio/BG' | |
ref_list=[os.path.join(ref_dir,file) for file in os.listdir(ref_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ] | |
ref_list.sort() | |
image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file] | |
image_list.sort() | |
def mask_image(image, mask): | |
blanc = np.ones_like(image) * 255 | |
mask = np.stack([mask,mask,mask],-1) / 255 | |
masked_image = mask * ( 0.5 * blanc + 0.5 * image) + (1-mask) * image | |
return masked_image.astype(np.uint8) | |
def run_local(base, | |
ref, | |
*args): | |
image = base["image"].convert("RGB") | |
mask = base["mask"].convert("L") | |
ref_image = ref["image"].convert("RGB") | |
ref_mask = ref["mask"].convert("L") | |
image = np.asarray(image) | |
mask = np.asarray(mask) | |
mask = np.where(mask > 128, 1, 0).astype(np.uint8) | |
ref_image = np.asarray(ref_image) | |
ref_mask = np.asarray(ref_mask) | |
ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8) | |
synthesis = inference_single_image(ref_image.copy(), ref_mask.copy(), image.copy(), mask.copy(), *args) | |
synthesis = torch.from_numpy(synthesis).permute(2, 0, 1) | |
synthesis = synthesis.permute(1, 2, 0).numpy() | |
return [synthesis] | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("# Play with AnyDoor to Teleport your Target Objects! ") | |
with gr.Row(): | |
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", columns=1, height=768) | |
with gr.Accordion("Advanced Option", open=True): | |
num_samples = 1 | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=4.5, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=-1) | |
enable_shape_control = gr.Checkbox(label='Enable Shape Control', value=False) | |
gr.Markdown("### Guidelines") | |
gr.Markdown(" Higher guidance-scale makes higher fidelity, while lower one makes more harmonized blending.") | |
gr.Markdown(" Enable shape control means the generation results would consider user-drawn masks; otherwise it \ | |
considers the location and size to adjust automatically.") | |
gr.Markdown(" Users should annotate the mask of the target object, too coarse mask would lead to bad generation.") | |
gr.Markdown("# Upload / Select Images for the Background (left) and Reference Object (right)") | |
gr.Markdown("### You could draw coarse masks on the background to indicate the desired location and shape.") | |
gr.Markdown("### <u>Do not forget</u> to annotate the target object on the reference image.") | |
with gr.Row(): | |
base = gr.Image(label="Background", source="upload", tool="sketch", type="pil", height=512, brush_color='#FFFFFF', mask_opacity=0.5) | |
ref = gr.Image(label="Reference", source="upload", tool="sketch", type="pil", height=512, brush_color='#FFFFFF', mask_opacity=0.5) | |
run_local_button = gr.Button(label="Generate", value="Run") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Examples(image_list, inputs=[base],label="Examples - Background Image",examples_per_page=16) | |
with gr.Column(): | |
gr.Examples(ref_list, inputs=[ref],label="Examples - Reference Object",examples_per_page=16) | |
run_local_button.click(fn=run_local, | |
inputs=[base, | |
ref, | |
strength, | |
ddim_steps, | |
scale, | |
seed, | |
enable_shape_control, | |
], | |
outputs=[baseline_gallery] | |
) | |
demo.launch() | |