汐知
init
19a149b
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
import torchvision.transforms as T
import open_clip
from ldm.util import default, count_params
from PIL import Image
from open_clip.transform import image_transform
import sys
class LayerNormFp32(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(orig_type)
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(orig_type)
class AbstractEncoder(nn.Module):
def __init__(self):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
class IdentityEncoder(AbstractEncoder):
def encode(self, x):
return x
class ClassEmbedder(nn.Module):
def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
super().__init__()
self.key = key
self.embedding = nn.Embedding(n_classes, embed_dim)
self.n_classes = n_classes
self.ucg_rate = ucg_rate
def forward(self, batch, key=None, disable_dropout=False):
if key is None:
key = self.key
# this is for use in crossattn
c = batch[key][:, None]
if self.ucg_rate > 0. and not disable_dropout:
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1)
c = c.long()
c = self.embedding(c)
return c
def get_unconditional_conditioning(self, bs, device="cuda"):
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
uc = torch.ones((bs,), device=device) * uc_class
uc = {self.key: uc}
return uc
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class FrozenT5Embedder(AbstractEncoder):
"""Uses the T5 transformer encoder for text"""
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
super().__init__()
self.tokenizer = T5Tokenizer.from_pretrained(version)
self.transformer = T5EncoderModel.from_pretrained(version)
self.device = device
self.max_length = max_length # TODO: typical value?
if freeze:
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
#self.train = disabled_train
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens)
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
class FrozenCLIPEmbedder(AbstractEncoder):
"""Uses the CLIP transformer encoder for text (from huggingface)"""
LAYERS = [
"last",
"pooled",
"hidden"
]
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
self.layer_idx = layer_idx
if layer == "hidden":
assert layer_idx is not None
assert 0 <= abs(layer_idx) <= 12
def freeze(self):
self.transformer = self.transformer.eval()
#self.train = disabled_train
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
if self.layer == "last":
z = outputs.last_hidden_state
elif self.layer == "pooled":
z = outputs.pooler_output[:, None, :]
else:
z = outputs.hidden_states[self.layer_idx]
return z
def encode(self, text):
return self(text)
class FrozenOpenCLIPEmbedder(AbstractEncoder):
"""
Uses the OpenCLIP transformer encoder for text
"""
LAYERS = [
#"pooled",
"last",
"penultimate"
]
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
freeze=True, layer="last"):
super().__init__()
assert layer in self.LAYERS
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
del model.visual
self.model = model
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
if self.layer == "last":
self.layer_idx = 0
elif self.layer == "penultimate":
self.layer_idx = 1
else:
raise NotImplementedError()
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
tokens = open_clip.tokenize(text)
z = self.encode_with_transformer(tokens.to(self.device))
return z
def encode_with_transformer(self, text):
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_final(x)
return x
def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
for i, r in enumerate(self.model.transformer.resblocks):
if i == len(self.model.transformer.resblocks) - self.layer_idx:
break
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
return x
def encode(self, text):
return self(text)
class FrozenCLIPT5Encoder(AbstractEncoder):
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
clip_max_length=77, t5_max_length=77):
super().__init__()
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")
def encode(self, text):
return self(text)
def forward(self, text):
clip_z = self.clip_encoder.encode(text)
t5_z = self.t5_encoder.encode(text)
return [clip_z, t5_z]
class FrozenOpenCLIPImageEncoder(AbstractEncoder):
"""
Uses the OpenCLIP transformer encoder for image
"""
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", freeze=True):
super().__init__()
model, _, preprocess= open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
del model.transformer
self.model = model
self.model.visual.output_tokens = True
self.device = device
if freeze:
self.freeze()
self.image_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
self.image_std = torch.tensor([0.26862954, 0.26130258, 0.275777]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
self.projector_token = nn.Linear(1280,1024)
self.projector_embed = nn.Linear(1024,1024)
def freeze(self):
self.model.visual.eval()
for param in self.model.parameters():
param.requires_grad = False
def forward(self, image):
if isinstance(image,list):
image = torch.cat(image,0)
image = (image.to(self.device) - self.image_mean.to(self.device)) / self.image_std.to(self.device)
image_features, tokens = self.model.visual(image)
image_features = image_features.unsqueeze(1)
image_features = self.projector_embed(image_features)
tokens = self.projector_token(tokens)
hint = torch.cat([image_features,tokens],1)
return hint
def encode(self, image):
return self(image)
sys.path.append("./dinov2")
import hubconf
from omegaconf import OmegaConf
config_path = './configs/anydoor.yaml'
config = OmegaConf.load(config_path)
DINOv2_weight_path = config.model.params.cond_stage_config.weight
class FrozenDinoV2Encoder(AbstractEncoder):
"""
Uses the DINOv2 encoder for image
"""
def __init__(self, device="cuda", freeze=True):
super().__init__()
dinov2 = hubconf.dinov2_vitg14()
#state_dict = torch.load(DINOv2_weight_path)
#dinov2.load_state_dict(state_dict, strict=False)
self.model = dinov2.to(device)
self.device = device
if freeze:
self.freeze()
self.image_mean = torch.tensor([0.485, 0.456, 0.406]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
self.image_std = torch.tensor([0.229, 0.224, 0.225]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
self.projector = nn.Linear(1536,1024)
def freeze(self):
self.model.eval()
for param in self.model.parameters():
param.requires_grad = False
def forward(self, image):
if isinstance(image,list):
image = torch.cat(image,0)
image = (image.to(self.device) - self.image_mean.to(self.device)) / self.image_std.to(self.device)
features = self.model.forward_features(image)
tokens = features["x_norm_patchtokens"]
image_features = features["x_norm_clstoken"]
image_features = image_features.unsqueeze(1)
hint = torch.cat([image_features,tokens],1) # 8,257,1024
hint = self.projector(hint)
return hint
def encode(self, image):
return self(image)