+
+## Issues
+We use GitHub issues to track public bugs. Please ensure your description is
+clear and has sufficient instructions to be able to reproduce the issue.
+
+Meta has a [bounty program](https://www.facebook.com/whitehat/) for the safe
+disclosure of security bugs. In those cases, please go through the process
+outlined on that page and do not file a public issue.
+
+## License
+By contributing to DINOv2, you agree that your contributions will be licensed
+under the LICENSE file in the root directory of this source tree.
diff --git a/dinov2/LICENSE b/dinov2/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..a115f899f8d09ef3b1def4a16c7bae1a0bd50fbe
--- /dev/null
+++ b/dinov2/LICENSE
@@ -0,0 +1,400 @@
+
+Attribution-NonCommercial 4.0 International
+
+=======================================================================
+
+Creative Commons Corporation ("Creative Commons") is not a law firm and
+does not provide legal services or legal advice. Distribution of
+Creative Commons public licenses does not create a lawyer-client or
+other relationship. Creative Commons makes its licenses and related
+information available on an "as-is" basis. Creative Commons gives no
+warranties regarding its licenses, any material licensed under their
+terms and conditions, or any related information. Creative Commons
+disclaims all liability for damages resulting from their use to the
+fullest extent possible.
+
+Using Creative Commons Public Licenses
+
+Creative Commons public licenses provide a standard set of terms and
+conditions that creators and other rights holders may use to share
+original works of authorship and other material subject to copyright
+and certain other rights specified in the public license below. The
+following considerations are for informational purposes only, are not
+exhaustive, and do not form part of our licenses.
+
+ Considerations for licensors: Our public licenses are
+ intended for use by those authorized to give the public
+ permission to use material in ways otherwise restricted by
+ copyright and certain other rights. Our licenses are
+ irrevocable. Licensors should read and understand the terms
+ and conditions of the license they choose before applying it.
+ Licensors should also secure all rights necessary before
+ applying our licenses so that the public can reuse the
+ material as expected. Licensors should clearly mark any
+ material not subject to the license. This includes other CC-
+ licensed material, or material used under an exception or
+ limitation to copyright. More considerations for licensors:
+ wiki.creativecommons.org/Considerations_for_licensors
+
+ Considerations for the public: By using one of our public
+ licenses, a licensor grants the public permission to use the
+ licensed material under specified terms and conditions. If
+ the licensor's permission is not necessary for any reason--for
+ example, because of any applicable exception or limitation to
+ copyright--then that use is not regulated by the license. Our
+ licenses grant only permissions under copyright and certain
+ other rights that a licensor has authority to grant. Use of
+ the licensed material may still be restricted for other
+ reasons, including because others have copyright or other
+ rights in the material. A licensor may make special requests,
+ such as asking that all changes be marked or described.
+ Although not required by our licenses, you are encouraged to
+ respect those requests where reasonable. More_considerations
+ for the public:
+ wiki.creativecommons.org/Considerations_for_licensees
+
+=======================================================================
+
+Creative Commons Attribution-NonCommercial 4.0 International Public
+License
+
+By exercising the Licensed Rights (defined below), You accept and agree
+to be bound by the terms and conditions of this Creative Commons
+Attribution-NonCommercial 4.0 International Public License ("Public
+License"). To the extent this Public License may be interpreted as a
+contract, You are granted the Licensed Rights in consideration of Your
+acceptance of these terms and conditions, and the Licensor grants You
+such rights in consideration of benefits the Licensor receives from
+making the Licensed Material available under these terms and
+conditions.
+
+Section 1 -- Definitions.
+
+ a. Adapted Material means material subject to Copyright and Similar
+ Rights that is derived from or based upon the Licensed Material
+ and in which the Licensed Material is translated, altered,
+ arranged, transformed, or otherwise modified in a manner requiring
+ permission under the Copyright and Similar Rights held by the
+ Licensor. For purposes of this Public License, where the Licensed
+ Material is a musical work, performance, or sound recording,
+ Adapted Material is always produced where the Licensed Material is
+ synched in timed relation with a moving image.
+
+ b. Adapter's License means the license You apply to Your Copyright
+ and Similar Rights in Your contributions to Adapted Material in
+ accordance with the terms and conditions of this Public License.
+
+ c. Copyright and Similar Rights means copyright and/or similar rights
+ closely related to copyright including, without limitation,
+ performance, broadcast, sound recording, and Sui Generis Database
+ Rights, without regard to how the rights are labeled or
+ categorized. For purposes of this Public License, the rights
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
+ Rights.
+ d. Effective Technological Measures means those measures that, in the
+ absence of proper authority, may not be circumvented under laws
+ fulfilling obligations under Article 11 of the WIPO Copyright
+ Treaty adopted on December 20, 1996, and/or similar international
+ agreements.
+
+ e. Exceptions and Limitations means fair use, fair dealing, and/or
+ any other exception or limitation to Copyright and Similar Rights
+ that applies to Your use of the Licensed Material.
+
+ f. Licensed Material means the artistic or literary work, database,
+ or other material to which the Licensor applied this Public
+ License.
+
+ g. Licensed Rights means the rights granted to You subject to the
+ terms and conditions of this Public License, which are limited to
+ all Copyright and Similar Rights that apply to Your use of the
+ Licensed Material and that the Licensor has authority to license.
+
+ h. Licensor means the individual(s) or entity(ies) granting rights
+ under this Public License.
+
+ i. NonCommercial means not primarily intended for or directed towards
+ commercial advantage or monetary compensation. For purposes of
+ this Public License, the exchange of the Licensed Material for
+ other material subject to Copyright and Similar Rights by digital
+ file-sharing or similar means is NonCommercial provided there is
+ no payment of monetary compensation in connection with the
+ exchange.
+
+ j. Share means to provide material to the public by any means or
+ process that requires permission under the Licensed Rights, such
+ as reproduction, public display, public performance, distribution,
+ dissemination, communication, or importation, and to make material
+ available to the public including in ways that members of the
+ public may access the material from a place and at a time
+ individually chosen by them.
+
+ k. Sui Generis Database Rights means rights other than copyright
+ resulting from Directive 96/9/EC of the European Parliament and of
+ the Council of 11 March 1996 on the legal protection of databases,
+ as amended and/or succeeded, as well as other essentially
+ equivalent rights anywhere in the world.
+
+ l. You means the individual or entity exercising the Licensed Rights
+ under this Public License. Your has a corresponding meaning.
+
+Section 2 -- Scope.
+
+ a. License grant.
+
+ 1. Subject to the terms and conditions of this Public License,
+ the Licensor hereby grants You a worldwide, royalty-free,
+ non-sublicensable, non-exclusive, irrevocable license to
+ exercise the Licensed Rights in the Licensed Material to:
+
+ a. reproduce and Share the Licensed Material, in whole or
+ in part, for NonCommercial purposes only; and
+
+ b. produce, reproduce, and Share Adapted Material for
+ NonCommercial purposes only.
+
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
+ Exceptions and Limitations apply to Your use, this Public
+ License does not apply, and You do not need to comply with
+ its terms and conditions.
+
+ 3. Term. The term of this Public License is specified in Section
+ 6(a).
+
+ 4. Media and formats; technical modifications allowed. The
+ Licensor authorizes You to exercise the Licensed Rights in
+ all media and formats whether now known or hereafter created,
+ and to make technical modifications necessary to do so. The
+ Licensor waives and/or agrees not to assert any right or
+ authority to forbid You from making technical modifications
+ necessary to exercise the Licensed Rights, including
+ technical modifications necessary to circumvent Effective
+ Technological Measures. For purposes of this Public License,
+ simply making modifications authorized by this Section 2(a)
+ (4) never produces Adapted Material.
+
+ 5. Downstream recipients.
+
+ a. Offer from the Licensor -- Licensed Material. Every
+ recipient of the Licensed Material automatically
+ receives an offer from the Licensor to exercise the
+ Licensed Rights under the terms and conditions of this
+ Public License.
+
+ b. No downstream restrictions. You may not offer or impose
+ any additional or different terms or conditions on, or
+ apply any Effective Technological Measures to, the
+ Licensed Material if doing so restricts exercise of the
+ Licensed Rights by any recipient of the Licensed
+ Material.
+
+ 6. No endorsement. Nothing in this Public License constitutes or
+ may be construed as permission to assert or imply that You
+ are, or that Your use of the Licensed Material is, connected
+ with, or sponsored, endorsed, or granted official status by,
+ the Licensor or others designated to receive attribution as
+ provided in Section 3(a)(1)(A)(i).
+
+ b. Other rights.
+
+ 1. Moral rights, such as the right of integrity, are not
+ licensed under this Public License, nor are publicity,
+ privacy, and/or other similar personality rights; however, to
+ the extent possible, the Licensor waives and/or agrees not to
+ assert any such rights held by the Licensor to the limited
+ extent necessary to allow You to exercise the Licensed
+ Rights, but not otherwise.
+
+ 2. Patent and trademark rights are not licensed under this
+ Public License.
+
+ 3. To the extent possible, the Licensor waives any right to
+ collect royalties from You for the exercise of the Licensed
+ Rights, whether directly or through a collecting society
+ under any voluntary or waivable statutory or compulsory
+ licensing scheme. In all other cases the Licensor expressly
+ reserves any right to collect such royalties, including when
+ the Licensed Material is used other than for NonCommercial
+ purposes.
+
+Section 3 -- License Conditions.
+
+Your exercise of the Licensed Rights is expressly made subject to the
+following conditions.
+
+ a. Attribution.
+
+ 1. If You Share the Licensed Material (including in modified
+ form), You must:
+
+ a. retain the following if it is supplied by the Licensor
+ with the Licensed Material:
+
+ i. identification of the creator(s) of the Licensed
+ Material and any others designated to receive
+ attribution, in any reasonable manner requested by
+ the Licensor (including by pseudonym if
+ designated);
+
+ ii. a copyright notice;
+
+ iii. a notice that refers to this Public License;
+
+ iv. a notice that refers to the disclaimer of
+ warranties;
+
+ v. a URI or hyperlink to the Licensed Material to the
+ extent reasonably practicable;
+
+ b. indicate if You modified the Licensed Material and
+ retain an indication of any previous modifications; and
+
+ c. indicate the Licensed Material is licensed under this
+ Public License, and include the text of, or the URI or
+ hyperlink to, this Public License.
+
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
+ reasonable manner based on the medium, means, and context in
+ which You Share the Licensed Material. For example, it may be
+ reasonable to satisfy the conditions by providing a URI or
+ hyperlink to a resource that includes the required
+ information.
+
+ 3. If requested by the Licensor, You must remove any of the
+ information required by Section 3(a)(1)(A) to the extent
+ reasonably practicable.
+
+ 4. If You Share Adapted Material You produce, the Adapter's
+ License You apply must not prevent recipients of the Adapted
+ Material from complying with this Public License.
+
+Section 4 -- Sui Generis Database Rights.
+
+Where the Licensed Rights include Sui Generis Database Rights that
+apply to Your use of the Licensed Material:
+
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
+ to extract, reuse, reproduce, and Share all or a substantial
+ portion of the contents of the database for NonCommercial purposes
+ only;
+
+ b. if You include all or a substantial portion of the database
+ contents in a database in which You have Sui Generis Database
+ Rights, then the database in which You have Sui Generis Database
+ Rights (but not its individual contents) is Adapted Material; and
+
+ c. You must comply with the conditions in Section 3(a) if You Share
+ all or a substantial portion of the contents of the database.
+
+For the avoidance of doubt, this Section 4 supplements and does not
+replace Your obligations under this Public License where the Licensed
+Rights include other Copyright and Similar Rights.
+
+Section 5 -- Disclaimer of Warranties and Limitation of Liability.
+
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
+
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
+
+ c. The disclaimer of warranties and limitation of liability provided
+ above shall be interpreted in a manner that, to the extent
+ possible, most closely approximates an absolute disclaimer and
+ waiver of all liability.
+
+Section 6 -- Term and Termination.
+
+ a. This Public License applies for the term of the Copyright and
+ Similar Rights licensed here. However, if You fail to comply with
+ this Public License, then Your rights under this Public License
+ terminate automatically.
+
+ b. Where Your right to use the Licensed Material has terminated under
+ Section 6(a), it reinstates:
+
+ 1. automatically as of the date the violation is cured, provided
+ it is cured within 30 days of Your discovery of the
+ violation; or
+
+ 2. upon express reinstatement by the Licensor.
+
+ For the avoidance of doubt, this Section 6(b) does not affect any
+ right the Licensor may have to seek remedies for Your violations
+ of this Public License.
+
+ c. For the avoidance of doubt, the Licensor may also offer the
+ Licensed Material under separate terms or conditions or stop
+ distributing the Licensed Material at any time; however, doing so
+ will not terminate this Public License.
+
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
+ License.
+
+Section 7 -- Other Terms and Conditions.
+
+ a. The Licensor shall not be bound by any additional or different
+ terms or conditions communicated by You unless expressly agreed.
+
+ b. Any arrangements, understandings, or agreements regarding the
+ Licensed Material not stated herein are separate from and
+ independent of the terms and conditions of this Public License.
+
+Section 8 -- Interpretation.
+
+ a. For the avoidance of doubt, this Public License does not, and
+ shall not be interpreted to, reduce, limit, restrict, or impose
+ conditions on any use of the Licensed Material that could lawfully
+ be made without permission under this Public License.
+
+ b. To the extent possible, if any provision of this Public License is
+ deemed unenforceable, it shall be automatically reformed to the
+ minimum extent necessary to make it enforceable. If the provision
+ cannot be reformed, it shall be severed from this Public License
+ without affecting the enforceability of the remaining terms and
+ conditions.
+
+ c. No term or condition of this Public License will be waived and no
+ failure to comply consented to unless expressly agreed to by the
+ Licensor.
+
+ d. Nothing in this Public License constitutes or may be interpreted
+ as a limitation upon, or waiver of, any privileges and immunities
+ that apply to the Licensor or You, including from the legal
+ processes of any jurisdiction or authority.
+
+=======================================================================
+
+Creative Commons is not a party to its public
+licenses. Notwithstanding, Creative Commons may elect to apply one of
+its public licenses to material it publishes and in those instances
+will be considered the “Licensor.” The text of the Creative Commons
+public licenses is dedicated to the public domain under the CC0 Public
+Domain Dedication. Except for the limited purpose of indicating that
+material is shared under a Creative Commons public license or as
+otherwise permitted by the Creative Commons policies published at
+creativecommons.org/policies, Creative Commons does not authorize the
+use of the trademark "Creative Commons" or any other trademark or logo
+of Creative Commons without its prior written consent including,
+without limitation, in connection with any unauthorized modifications
+to any of its public licenses or any other arrangements,
+understandings, or agreements concerning use of licensed material. For
+the avoidance of doubt, this paragraph does not form part of the
+public licenses.
+
+Creative Commons may be contacted at creativecommons.org.
diff --git a/dinov2/MODEL_CARD.md b/dinov2/MODEL_CARD.md
new file mode 100644
index 0000000000000000000000000000000000000000..5cd35748eb3c5d8f607f83ff068367a0102117c5
--- /dev/null
+++ b/dinov2/MODEL_CARD.md
@@ -0,0 +1,201 @@
+# Model Card for DINOv2-S/B/L/g
+
+These are Vision Transformer models trained following the method described in the paper:
+"DINOv2: Learning Robust Visual Features without Supervision"
+
+We provide 4 models: 1 ViT-g trained from scratch, and 3 ViT-S/B/L models distilled from the ViT-g.
+
+## Model Details
+The model takes an image as input and returns a class token and patch tokens.
+
+The embedding dimension is:
+- 384 for ViT-S.
+- 768 for ViT-B.
+- 1024 for ViT-L.
+- 1536 for ViT-g.
+
+The models follow a Transformer architecture, with a patch size of 14.
+
+For a 224x224 image, this results in 1 class token + 256 patch tokens.
+
+The models can accept larger images provided the image shapes are multiples of the patch size (14).
+If this condition is not verified, the model will crop to the closest smaller multiple of the patch size.
+
+### Model Description
+
+- **Developed by:** Meta AI
+- **Model type:** Vision Transformer
+- **License:** CC-BY-NC
+
+- **Repository:** https://github.com/facebookresearch/dinov2
+- **Paper:** https://arxiv.org/abs/2304.07193
+- **Demo:** https://dinov2.metademolab.com/
+
+## Uses
+
+The models are vision backbones providing multi-purpose features for downstream tasks.
+
+### Direct Use
+
+The models can be used without fine-tuning, with downstream classifiers as simple as linear layers, to obtain competitive results:
+- on depth estimation, semantic segmentation, using linear layers.
+- on image classification, using k-NN classifiers on the class token.
+- on image classification, with logistic regression classifiers applied on the class token.
+- on image classification, with a linear layer applied on the class token and the average of the patch tokens.
+- on image retrieval using nearest neighbors.
+
+### Downstream Use
+
+It is technically possible to perform fine-tuning on the models, for small gains (we measured +2% on ImageNet-1k classification).
+We recommend keeping this as a very last step and only when necessary, as the features already provide good performance out-of-the-box.
+
+## Bias, Risks, and Limitations
+
+Despite improvements thanks to the training method not using annotations, we still observe significant biases in our models toward rich households from Western countries.
+
+### Recommendations
+
+We expect fine-tuning will increase the biases in the features produced by the model as they will be tuned to the fine-tuning labels.
+
+## How to Get Started with the Model
+
+Use the code below to get started with the model.
+
+```python
+import torch
+dinov2_vits14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
+dinov2_vitb14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14')
+dinov2_vitl14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14')
+dinov2_vitg14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14')
+```
+
+## Training Details
+
+### Training Data
+
+- **Training data:** LVD-142M (see paper)
+- **Training regime:** fp16 using PyTorch-FSDP mixed-precision.
+
+### Training Procedure
+
+- **Training objective:**
+ - DINO self-distillation loss with multi-crop
+ - iBOT masked-image modeling loss
+ - KoLeo regularization on [CLS] tokens
+- **Architectures:**
+ - ViT-S (21M params): Patch size 14, embedding dimension 384, 6 heads, MLP FFN
+ - ViT-B (86M params): Patch size 14, embedding dimension 768, 12 heads, MLP FFN
+ - ViT-L (0.3B params): Patch size 14, embedding dimension 1024, 16 heads, MLP FFN
+ - ViT-g (1.1B params): Patch size 14, embedding dimension 1536, 24 heads, SwiGLU FFN
+- **Distillation:**
+ - Distillation follows the standard DINOv2 pretraining procedure, except the teacher is a pretrained ViT-g, frozen.
+
+## Evaluation
+
+We refer users to the associated paper for the evaluation protocols.
+
+
+
+ model |
+ ImageNet-1k |
+ NYU-Depth v2 |
+ SUN-RGBD |
+ ADE20k |
+ iNaturalist 2018 |
+ Oxford-H |
+
+
+ task |
+ classif. (acc) |
+ classif. (acc) |
+ classif. V2 (acc) |
+ depth (RMSE) |
+ depth (RMSE) |
+ segm. (mAP) |
+ classif. (acc) |
+ retrieval (mAP) |
+
+
+
+ k-NN |
+ linear |
+ linear |
+ linear 4 layers |
+ NYU-D transfer |
+ multiscale |
+ linear |
+ nearest neighbor |
+
+
+ ViT-S/14 |
+ 79.0% |
+ 81.1% |
+ 70.8% |
+ 0.417 |
+ 0.431 |
+ 47.2 |
+ 69.5% |
+ 43.2 |
+
+
+ ViT-B/14 |
+ 82.1% |
+ 84.5% |
+ 74.9% |
+ 0.362 |
+ 0.400 |
+ 51.3 |
+ 76.3% |
+ 49.5 |
+
+
+ ViT-L/14 |
+ 83.5% |
+ 86.3% |
+ 77.6% |
+ 0.333 |
+ 0.396 |
+ 53.1 |
+ 79.8% |
+ 54.0 |
+
+
+ ViT-g/14 |
+ 83.5% |
+ 86.5% |
+ 78.4% |
+ 0.298 |
+ 0.362 |
+ 53.0 |
+ 81.6% |
+ 52.3 |
+
+
+
+## Environmental Impact
+
+- **Hardware Type:** Nvidia A100
+- **Hours used:** 22,000 for ViT-g, 4,500 for ViT-S distillation, 5,300 for ViT-B distillation, 8,000 for ViT-L distillation
+- **Cloud Provider:** Private infra
+- **Compute Region:** USA
+- **Carbon Emitted:** 7t CO2eq
+
+#### Hardware
+
+Nvidia A100 GPUs
+
+#### Software
+
+PyTorch 2.0,
+xFormers 0.0.18
+
+**BibTeX**
+
+```
+@misc{oquab2023dinov2,
+ title={DINOv2: Learning Robust Visual Features without Supervision},
+ author={Oquab, Maxime and Darcet, Timothée and Moutakanni, Theo and Vo, Huy and Szafraniec, Marc and Khalidov, Vasil and Fernandez, Pierre and Haziza, Daniel and Massa, Francisco and El-Nouby, Alaaeldin and Howes, Russell and Huang, Po-Yao and Xu, Hu and Sharma, Vasu and Li, Shang-Wen and Galuba, Wojciech and Rabbat, Mike and Assran, Mido and Ballas, Nicolas and Synnaeve, Gabriel and Misra, Ishan and Jegou, Herve and Mairal, Julien and Labatut, Patrick and Joulin, Armand and Bojanowski, Piotr},
+ journal={arXiv:2304.07193},
+ year={2023}
+}
+```
diff --git a/dinov2/README.md b/dinov2/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..4429f1c15965edf57efaa17cf64125acc97dbedf
--- /dev/null
+++ b/dinov2/README.md
@@ -0,0 +1,248 @@
+# DINOv2: Learning Robust Visual Features without Supervision
+
+**[Meta AI Research, FAIR](https://ai.facebook.com/research/)**
+
+Maxime Oquab,
+Timothée Darcet,
+Théo Moutakanni,
+Huy Vo,
+Marc Szafraniec,
+Vasil Khalidov,
+Patrick Labatut,
+Armand Joulin,
+Piotr Bojanowski
+
+[[`Paper`](https://arxiv.org/abs/2304.07193)] [[`Blog`](https://ai.facebook.com/blog/dino-v2-computer-vision-self-supervised-learning/)] [[`Demo`](https://dinov2.metademolab.com)] [[`BibTeX`](#citing-dinov2)]
+
+PyTorch implementation and pretrained models for DINOv2. For details, see the paper: **DINOv2: Learning Robust Visual Features without Supervision**.
+
+DINOv2 models produce high-performance visual features that can be directly employed with classifiers as simple as linear layers on a variety of computer vision tasks; these visual features are robust and perform well across domains without any requirement for fine-tuning. The models were pretrained on a dataset of 142 M images without using any labels or annotations.
+
+
+https://user-images.githubusercontent.com/60359573/230078733-5faffa19-e6ce-4c55-9200-62dd76f8236a.mp4
+
+
+ Visualization of the three first principal components of the patch features of all frames, mapped to RGB values.
+
+
+## Pretrained models
+
+
+
+ model |
+ # of params |
+ ImageNet k-NN |
+ ImageNet linear |
+ download |
+
+
+ ViT-S/14 distilled |
+ 21 M |
+ 79.0% |
+ 81.1% |
+ backbone only |
+
+
+ ViT-B/14 distilled |
+ 86 M |
+ 82.1% |
+ 84.5% |
+ backbone only |
+
+
+ ViT-L/14 distilled |
+ 300 M |
+ 83.5% |
+ 86.3% |
+ backbone only |
+
+
+ ViT-g/14 |
+ 1,100 M |
+ 83.5% |
+ 86.5% |
+ backbone only |
+
+
+
+
+### Pretrained models via PyTorch Hub
+
+Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install the PyTorch and torchvision dependencies (these are the only required dependencies). Installing both PyTorch and torchvision with CUDA support is strongly recommended.
+
+The corresponding model card can be found in the [[`MODEL_CARD.md`](MODEL_CARD.md)] file.
+
+```python
+import torch
+
+dinov2_vits14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
+dinov2_vitb14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14')
+dinov2_vitl14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14')
+dinov2_vitg14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14')
+```
+
+## Installation
+
+The training and evaluation code requires PyTorch 2.0 and xFormers 0.0.18 as well as a number of other 3rd party packages. To setup all the required dependencies for training and evaluation, please follow the instructions below:
+
+*conda* **(Recommended)** - Create and activate a `dinov2` conda environment using the provided environment definition:
+
+```shell
+conda env create -f conda.yaml
+conda activate dinov2
+```
+
+*pip* - Use the provided `requirements.txt` to install the dependencies:
+
+```shell
+pip install -r requirements.txt
+```
+
+## Data preparation
+
+Expected contents for the ImageNet-1k data folder:
+- `/test/ILSVRC2012_test_00000001.JPEG`
+- `/test/[..]`
+- `/test/ILSVRC2012_test_00100000.JPEG`
+- `/train/n01440764/n01440764_10026.JPEG`
+- `/train/[...]`
+- `/train/n15075141/n15075141_9993.JPEG`
+- `/val/n01440764/ILSVRC2012_val_00000293.JPEG`
+- `/val/[...]`
+- `/val/n15075141/ILSVRC2012_val_00049174.JPEG`
+- `/labels.txt`
+
+For ImageNet-22k, please adapt the Dataset object accordingly.
+
+## Training
+
+### Fast setup: training DINOv2 ViT-L/16 on ImageNet-1k
+
+Run DINOv2 on 4 A100-80GB nodes (32 GPUs) in a SLURM cluster environment with submitit.
+
+```shell
+python dinov2/run/train/train.py \
+ --nodes 4 \
+ --config-file dinov2/configs/train/vitl16_short.yaml \
+ --output-dir \
+ train.dataset_path=ImageNet:split=TRAIN:root=:extra=
+```
+
+Training time is approximately 1 day and the resulting checkpoint should reach 81.6% on k-NN eval and 82.9% on linear eval.
+
+The training code saves the weights of the teacher in the `eval` folder every 12500 iterations for evaluation.
+
+### Long setup: training DINOv2 ViT-L/14 on ImageNet-22k
+
+Run on 12 A100-80GB nodes (96 GPUs) in a SLURM cluster environment with submitit.
+
+```
+python dinov2/run/train/train.py \
+ --nodes 12 \
+ --config-file dinov2/configs/train/vitl14.yaml \
+ --output-dir \
+ train.dataset_path=ImageNet22k:root=:extra=
+```
+
+Training time is approximately 3.3 days and the resulting checkpoint should reach 82.0% on k-NN eval and 84.5% on linear eval.
+
+The training code saves the weights of the teacher in the `eval` folder every 12500 iterations for evaluation.
+
+
+## Evaluation
+
+The training code regularly saves the teacher weights. In order to evaluate the model, run the following evaluation on a single node:
+
+### k-NN classification on ImageNet-1k
+
+```
+python dinov2/run/eval/knn.py \
+ --config-file /config.yaml \
+ --pretrained-weights /eval/training_24999/teacher_checkpoint.pth \
+ --output-dir /eval/training_24999/knn \
+ --train-dataset ImageNet:split=TRAIN:root=:extra= \
+ --val-dataset ImageNet:split=VAL:root=:extra=
+```
+
+### Logistic regression classification on ImageNet-1k
+
+```
+python dinov2/run/eval/log_regression.py \
+ --config-file /config.yaml \
+ --pretrained-weights /eval/training_24999/teacher_checkpoint.pth \
+ --output-dir /eval/training_24999/logreg \
+ --train-dataset ImageNet:split=TRAIN:root=:extra= \
+ --val-dataset ImageNet:split=VAL:root=:extra=
+```
+
+### Linear classification with data augmentation on ImageNet-1k
+
+```
+python dinov2/run/eval/linear.py \
+ --config-file /config.yaml \
+ --pretrained-weights /eval/training_24999/teacher_checkpoint.pth \
+ --output-dir /eval/training_24999/linear \
+ --train-dataset ImageNet:split=TRAIN:root=:extra= \
+ --val-dataset ImageNet:split=VAL:root=:extra=
+```
+
+We release the weights from evaluating the different models:
+
+
+
+The performance of the provided pretrained model weights can be evaluated as follows on ImageNet-1k:
+
+```
+python dinov2/run/eval/linear.py \
+ --config-file dinov2/configs/eval/vitg14_pretrain.yaml \
+ --pretrained-weights https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_pretrain.pth \
+ --train-dataset ImageNet:split=TRAIN:root=:extra= \
+ --val-dataset ImageNet:split=VAL:root=:extra=
+```
+
+## License
+
+This repository and the models are released under the CC-BY-NC as found in the [LICENSE](LICENSE) file.
+
+## Contributing
+
+See [contributing](CONTRIBUTING.md) and the [code of conduct](CODE_OF_CONDUCT.md).
+
+## Citing DINOv2
+
+If you find this repository useful, please consider giving a star :star: and citation :t-rex::
+
+```
+@misc{oquab2023dinov2,
+ title={DINOv2: Learning Robust Visual Features without Supervision},
+ author={Oquab, Maxime and Darcet, Timothée and Moutakanni, Theo and Vo, Huy and Szafraniec, Marc and Khalidov, Vasil and Fernandez, Pierre and Haziza, Daniel and Massa, Francisco and El-Nouby, Alaaeldin and Howes, Russell and Huang, Po-Yao and Xu, Hu and Sharma, Vasu and Li, Shang-Wen and Galuba, Wojciech and Rabbat, Mike and Assran, Mido and Ballas, Nicolas and Synnaeve, Gabriel and Misra, Ishan and Jegou, Herve and Mairal, Julien and Labatut, Patrick and Joulin, Armand and Bojanowski, Piotr},
+ journal={arXiv:2304.07193},
+ year={2023}
+}
+```
diff --git a/dinov2/conda.yaml b/dinov2/conda.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..35dfc30adc275da51b58ff2340dd1d53d2cb9250
--- /dev/null
+++ b/dinov2/conda.yaml
@@ -0,0 +1,22 @@
+name: dinov2
+channels:
+ - defaults
+ - pytorch
+ - nvidia
+ - xformers
+ - conda-forge
+dependencies:
+ - python=3.9
+ - pytorch::pytorch=2.0.0
+ - pytorch::pytorch-cuda=11.7.0
+ - pytorch::torchvision=0.15.0
+ - omegaconf
+ - torchmetrics=0.10.3
+ - fvcore
+ - iopath
+ - xformers::xformers=0.0.18
+ - pip
+ - pip:
+ - git+https://github.com/facebookincubator/submitit
+ - --extra-index-url https://pypi.nvidia.com
+ - cuml-cu11
diff --git a/dinov2/dinov2/__init__.py b/dinov2/dinov2/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5b4afb514783786adf76744f9b97f3e1db1d6081
--- /dev/null
+++ b/dinov2/dinov2/__init__.py
@@ -0,0 +1,7 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+__version__ = "0.0.1"
diff --git a/dinov2/dinov2/configs/__init__.py b/dinov2/dinov2/configs/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..033c35660450afec6612adb342c7c30e1ccd15ee
--- /dev/null
+++ b/dinov2/dinov2/configs/__init__.py
@@ -0,0 +1,23 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import pathlib
+
+from omegaconf import OmegaConf
+
+
+def load_config(config_name: str):
+ config_filename = config_name + ".yaml"
+ return OmegaConf.load(pathlib.Path(__file__).parent.resolve() / config_filename)
+
+
+dinov2_default_config = load_config("ssl_default_config")
+
+
+def load_and_merge_config(config_name: str):
+ default_config = OmegaConf.create(dinov2_default_config)
+ loaded_config = load_config(config_name)
+ return OmegaConf.merge(default_config, loaded_config)
diff --git a/dinov2/dinov2/configs/eval/vitb14_pretrain.yaml b/dinov2/dinov2/configs/eval/vitb14_pretrain.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..117d0f027ca26cd8ce6c010bb78d5a8fac42c70e
--- /dev/null
+++ b/dinov2/dinov2/configs/eval/vitb14_pretrain.yaml
@@ -0,0 +1,6 @@
+student:
+ arch: vit_base
+ patch_size: 14
+crops:
+ global_crops_size: 518 # this is to set up the position embeddings properly
+ local_crops_size: 98
\ No newline at end of file
diff --git a/dinov2/dinov2/configs/eval/vitg14_pretrain.yaml b/dinov2/dinov2/configs/eval/vitg14_pretrain.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a96dd5b117b4d59ee210b65037821f1b3e3f16e3
--- /dev/null
+++ b/dinov2/dinov2/configs/eval/vitg14_pretrain.yaml
@@ -0,0 +1,7 @@
+student:
+ arch: vit_giant2
+ patch_size: 14
+ ffn_layer: swiglufused
+crops:
+ global_crops_size: 518 # this is to set up the position embeddings properly
+ local_crops_size: 98
\ No newline at end of file
diff --git a/dinov2/dinov2/configs/eval/vitl14_pretrain.yaml b/dinov2/dinov2/configs/eval/vitl14_pretrain.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..7a984548bd034f762d455419d7193917fa462dd8
--- /dev/null
+++ b/dinov2/dinov2/configs/eval/vitl14_pretrain.yaml
@@ -0,0 +1,6 @@
+student:
+ arch: vit_large
+ patch_size: 14
+crops:
+ global_crops_size: 518 # this is to set up the position embeddings properly
+ local_crops_size: 98
\ No newline at end of file
diff --git a/dinov2/dinov2/configs/eval/vits14_pretrain.yaml b/dinov2/dinov2/configs/eval/vits14_pretrain.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..afbdb4ba14f1c97130a25b579360f4d817cda495
--- /dev/null
+++ b/dinov2/dinov2/configs/eval/vits14_pretrain.yaml
@@ -0,0 +1,6 @@
+student:
+ arch: vit_small
+ patch_size: 14
+crops:
+ global_crops_size: 518 # this is to set up the position embeddings properly
+ local_crops_size: 98
\ No newline at end of file
diff --git a/dinov2/dinov2/configs/ssl_default_config.yaml b/dinov2/dinov2/configs/ssl_default_config.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a4ef04545ce9d6cc52b5179236008adc8a9bbda2
--- /dev/null
+++ b/dinov2/dinov2/configs/ssl_default_config.yaml
@@ -0,0 +1,115 @@
+MODEL:
+ WEIGHTS: ''
+compute_precision:
+ grad_scaler: true
+ teacher:
+ backbone:
+ sharding_strategy: SHARD_GRAD_OP
+ mixed_precision:
+ param_dtype: fp16
+ reduce_dtype: fp16
+ buffer_dtype: fp32
+ dino_head:
+ sharding_strategy: SHARD_GRAD_OP
+ mixed_precision:
+ param_dtype: fp16
+ reduce_dtype: fp16
+ buffer_dtype: fp32
+ ibot_head:
+ sharding_strategy: SHARD_GRAD_OP
+ mixed_precision:
+ param_dtype: fp16
+ reduce_dtype: fp16
+ buffer_dtype: fp32
+ student:
+ backbone:
+ sharding_strategy: SHARD_GRAD_OP
+ mixed_precision:
+ param_dtype: fp16
+ reduce_dtype: fp16
+ buffer_dtype: fp32
+ dino_head:
+ sharding_strategy: SHARD_GRAD_OP
+ mixed_precision:
+ param_dtype: fp16
+ reduce_dtype: fp32
+ buffer_dtype: fp32
+ ibot_head:
+ sharding_strategy: SHARD_GRAD_OP
+ mixed_precision:
+ param_dtype: fp16
+ reduce_dtype: fp32
+ buffer_dtype: fp32
+dino:
+ loss_weight: 1.0
+ head_n_prototypes: 65536
+ head_bottleneck_dim: 256
+ head_nlayers: 3
+ head_hidden_dim: 2048
+ koleo_loss_weight: 0.1
+ibot:
+ loss_weight: 1.0
+ mask_sample_probability: 0.5
+ mask_ratio_min_max:
+ - 0.1
+ - 0.5
+ separate_head: false
+ head_n_prototypes: 65536
+ head_bottleneck_dim: 256
+ head_nlayers: 3
+ head_hidden_dim: 2048
+train:
+ batch_size_per_gpu: 64
+ dataset_path: ImageNet:split=TRAIN
+ output_dir: .
+ saveckp_freq: 20
+ seed: 0
+ num_workers: 10
+ OFFICIAL_EPOCH_LENGTH: 1250
+ cache_dataset: true
+ centering: "centering" # or "sinkhorn_knopp"
+student:
+ arch: vit_large
+ patch_size: 16
+ drop_path_rate: 0.3
+ layerscale: 1.0e-05
+ drop_path_uniform: true
+ pretrained_weights: ''
+ ffn_layer: "mlp"
+ block_chunks: 0
+ qkv_bias: true
+ proj_bias: true
+ ffn_bias: true
+teacher:
+ momentum_teacher: 0.992
+ final_momentum_teacher: 1
+ warmup_teacher_temp: 0.04
+ teacher_temp: 0.07
+ warmup_teacher_temp_epochs: 30
+optim:
+ epochs: 100
+ weight_decay: 0.04
+ weight_decay_end: 0.4
+ base_lr: 0.004 # learning rate for a batch size of 1024
+ lr: 0. # will be set after applying scaling rule
+ warmup_epochs: 10
+ min_lr: 1.0e-06
+ clip_grad: 3.0
+ freeze_last_layer_epochs: 1
+ scaling_rule: sqrt_wrt_1024
+ patch_embed_lr_mult: 0.2
+ layerwise_decay: 0.9
+ adamw_beta1: 0.9
+ adamw_beta2: 0.999
+crops:
+ global_crops_scale:
+ - 0.32
+ - 1.0
+ local_crops_number: 8
+ local_crops_scale:
+ - 0.05
+ - 0.32
+ global_crops_size: 224
+ local_crops_size: 96
+evaluation:
+ eval_period_iterations: 12500
diff --git a/dinov2/dinov2/configs/train/vitg14.yaml b/dinov2/dinov2/configs/train/vitg14.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d05cf0d59e07ac6e4a2b0f9bdcb6131d7c508962
--- /dev/null
+++ b/dinov2/dinov2/configs/train/vitg14.yaml
@@ -0,0 +1,26 @@
+dino:
+ head_n_prototypes: 131072
+ head_bottleneck_dim: 384
+ibot:
+ separate_head: true
+ head_n_prototypes: 131072
+train:
+ batch_size_per_gpu: 12
+ dataset_path: ImageNet22k
+ centering: sinkhorn_knopp
+student:
+ arch: vit_giant2
+ patch_size: 14
+ drop_path_rate: 0.4
+ ffn_layer: swiglufused
+ block_chunks: 4
+teacher:
+ momentum_teacher: 0.994
+optim:
+ epochs: 500
+ weight_decay_end: 0.2
+ base_lr: 2.0e-04 # learning rate for a batch size of 1024
+ warmup_epochs: 80
+ layerwise_decay: 1.0
+crops:
+ local_crops_size: 98
\ No newline at end of file
diff --git a/dinov2/dinov2/configs/train/vitl14.yaml b/dinov2/dinov2/configs/train/vitl14.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d9b491dcc6a522c71328fc2933dd0501123c8f6b
--- /dev/null
+++ b/dinov2/dinov2/configs/train/vitl14.yaml
@@ -0,0 +1,26 @@
+dino:
+ head_n_prototypes: 131072
+ head_bottleneck_dim: 384
+ibot:
+ separate_head: true
+ head_n_prototypes: 131072
+train:
+ batch_size_per_gpu: 32
+ dataset_path: ImageNet22k
+ centering: sinkhorn_knopp
+student:
+ arch: vit_large
+ patch_size: 14
+ drop_path_rate: 0.4
+ ffn_layer: swiglufused
+ block_chunks: 4
+teacher:
+ momentum_teacher: 0.994
+optim:
+ epochs: 500
+ weight_decay_end: 0.2
+ base_lr: 2.0e-04 # learning rate for a batch size of 1024
+ warmup_epochs: 80
+ layerwise_decay: 1.0
+crops:
+ local_crops_size: 98
\ No newline at end of file
diff --git a/dinov2/dinov2/configs/train/vitl16_short.yaml b/dinov2/dinov2/configs/train/vitl16_short.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3e7e72864c92175a1354142ac1d64da8070d1e5e
--- /dev/null
+++ b/dinov2/dinov2/configs/train/vitl16_short.yaml
@@ -0,0 +1,6 @@
+# this corresponds to the default config
+train:
+ dataset_path: ImageNet:split=TRAIN
+ batch_size_per_gpu: 64
+student:
+ block_chunks: 4
diff --git a/dinov2/dinov2/data/__init__.py b/dinov2/dinov2/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..357db5c542c5810391ba2bd45a60c13c01c3737a
--- /dev/null
+++ b/dinov2/dinov2/data/__init__.py
@@ -0,0 +1,11 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from .adapters import DatasetWithEnumeratedTargets
+from .loaders import make_data_loader, make_dataset, SamplerType
+from .collate import collate_data_and_cast
+from .masking import MaskingGenerator
+from .augmentations import DataAugmentationDINO
diff --git a/dinov2/dinov2/data/adapters.py b/dinov2/dinov2/data/adapters.py
new file mode 100644
index 0000000000000000000000000000000000000000..fe9ce78b0cdf6c07a8fac927589a3cf666546c7e
--- /dev/null
+++ b/dinov2/dinov2/data/adapters.py
@@ -0,0 +1,32 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import Any, Tuple
+
+from torch.utils.data import Dataset
+
+
+class DatasetWithEnumeratedTargets(Dataset):
+ def __init__(self, dataset):
+ self._dataset = dataset
+
+ def get_image_data(self, index: int) -> bytes:
+ return self._dataset.get_image_data(index)
+
+ def get_target(self, index: int) -> Tuple[Any, int]:
+ target = self._dataset.get_target(index)
+ return (index, target)
+
+ def get_sample_decoder(self, index: int) -> Any:
+ return self._dataset.get_sample_decoder(index)
+
+ def __getitem__(self, index: int) -> Tuple[Any, Tuple[Any, int]]:
+ image, target = self._dataset[index]
+ target = index if target is None else target
+ return image, (index, target)
+
+ def __len__(self) -> int:
+ return len(self._dataset)
diff --git a/dinov2/dinov2/data/augmentations.py b/dinov2/dinov2/data/augmentations.py
new file mode 100644
index 0000000000000000000000000000000000000000..7ca28cb59a4de2566a6c9ef9c301cbbb4e54b5ee
--- /dev/null
+++ b/dinov2/dinov2/data/augmentations.py
@@ -0,0 +1,119 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+
+from torchvision import transforms
+
+from .transforms import (
+ GaussianBlur,
+ make_normalize_transform,
+)
+
+
+logger = logging.getLogger("dinov2")
+
+
+class DataAugmentationDINO(object):
+ def __init__(
+ self,
+ global_crops_scale,
+ local_crops_scale,
+ local_crops_number,
+ global_crops_size=224,
+ local_crops_size=96,
+ ):
+ self.global_crops_scale = global_crops_scale
+ self.local_crops_scale = local_crops_scale
+ self.local_crops_number = local_crops_number
+ self.global_crops_size = global_crops_size
+ self.local_crops_size = local_crops_size
+
+ logger.info("###################################")
+ logger.info("Using data augmentation parameters:")
+ logger.info(f"global_crops_scale: {global_crops_scale}")
+ logger.info(f"local_crops_scale: {local_crops_scale}")
+ logger.info(f"local_crops_number: {local_crops_number}")
+ logger.info(f"global_crops_size: {global_crops_size}")
+ logger.info(f"local_crops_size: {local_crops_size}")
+ logger.info("###################################")
+
+ # random resized crop and flip
+ self.geometric_augmentation_global = transforms.Compose(
+ [
+ transforms.RandomResizedCrop(
+ global_crops_size, scale=global_crops_scale, interpolation=transforms.InterpolationMode.BICUBIC
+ ),
+ transforms.RandomHorizontalFlip(p=0.5),
+ ]
+ )
+
+ self.geometric_augmentation_local = transforms.Compose(
+ [
+ transforms.RandomResizedCrop(
+ local_crops_size, scale=local_crops_scale, interpolation=transforms.InterpolationMode.BICUBIC
+ ),
+ transforms.RandomHorizontalFlip(p=0.5),
+ ]
+ )
+
+ # color distorsions / blurring
+ color_jittering = transforms.Compose(
+ [
+ transforms.RandomApply(
+ [transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)],
+ p=0.8,
+ ),
+ transforms.RandomGrayscale(p=0.2),
+ ]
+ )
+
+ global_transfo1_extra = GaussianBlur(p=1.0)
+
+ global_transfo2_extra = transforms.Compose(
+ [
+ GaussianBlur(p=0.1),
+ transforms.RandomSolarize(threshold=128, p=0.2),
+ ]
+ )
+
+ local_transfo_extra = GaussianBlur(p=0.5)
+
+ # normalization
+ self.normalize = transforms.Compose(
+ [
+ transforms.ToTensor(),
+ make_normalize_transform(),
+ ]
+ )
+
+ self.global_transfo1 = transforms.Compose([color_jittering, global_transfo1_extra, self.normalize])
+ self.global_transfo2 = transforms.Compose([color_jittering, global_transfo2_extra, self.normalize])
+ self.local_transfo = transforms.Compose([color_jittering, local_transfo_extra, self.normalize])
+
+ def __call__(self, image):
+ output = {}
+
+ # global crops:
+ im1_base = self.geometric_augmentation_global(image)
+ global_crop_1 = self.global_transfo1(im1_base)
+
+ im2_base = self.geometric_augmentation_global(image)
+ global_crop_2 = self.global_transfo2(im2_base)
+
+ output["global_crops"] = [global_crop_1, global_crop_2]
+
+ # global crops for teacher:
+ output["global_crops_teacher"] = [global_crop_1, global_crop_2]
+
+ # local crops:
+ local_crops = [
+ self.local_transfo(self.geometric_augmentation_local(image)) for _ in range(self.local_crops_number)
+ ]
+ output["local_crops"] = local_crops
+ output["offsets"] = ()
+
+ return output
diff --git a/dinov2/dinov2/data/collate.py b/dinov2/dinov2/data/collate.py
new file mode 100644
index 0000000000000000000000000000000000000000..9f0d98906808ed326dff4486d95b3ec04f8a5e75
--- /dev/null
+++ b/dinov2/dinov2/data/collate.py
@@ -0,0 +1,50 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+import random
+
+
+def collate_data_and_cast(samples_list, mask_ratio_tuple, mask_probability, dtype, n_tokens=None, mask_generator=None):
+ # dtype = torch.half # TODO: Remove
+
+ n_global_crops = len(samples_list[0][0]["global_crops"])
+ n_local_crops = len(samples_list[0][0]["local_crops"])
+
+ collated_global_crops = torch.stack([s[0]["global_crops"][i] for i in range(n_global_crops) for s in samples_list])
+
+ collated_local_crops = torch.stack([s[0]["local_crops"][i] for i in range(n_local_crops) for s in samples_list])
+
+ B = len(collated_global_crops)
+ N = n_tokens
+ n_samples_masked = int(B * mask_probability)
+ probs = torch.linspace(*mask_ratio_tuple, n_samples_masked + 1)
+ upperbound = 0
+ masks_list = []
+ for i in range(0, n_samples_masked):
+ prob_min = probs[i]
+ prob_max = probs[i + 1]
+ masks_list.append(torch.BoolTensor(mask_generator(int(N * random.uniform(prob_min, prob_max)))))
+ upperbound += int(N * prob_max)
+ for i in range(n_samples_masked, B):
+ masks_list.append(torch.BoolTensor(mask_generator(0)))
+
+ random.shuffle(masks_list)
+
+ collated_masks = torch.stack(masks_list).flatten(1)
+ mask_indices_list = collated_masks.flatten().nonzero().flatten()
+
+ masks_weight = (1 / collated_masks.sum(-1).clamp(min=1.0)).unsqueeze(-1).expand_as(collated_masks)[collated_masks]
+
+ return {
+ "collated_global_crops": collated_global_crops.to(dtype),
+ "collated_local_crops": collated_local_crops.to(dtype),
+ "collated_masks": collated_masks,
+ "mask_indices_list": mask_indices_list,
+ "masks_weight": masks_weight,
+ "upperbound": upperbound,
+ "n_masked_patches": torch.full((1,), fill_value=mask_indices_list.shape[0], dtype=torch.long),
+ }
diff --git a/dinov2/dinov2/data/datasets/__init__.py b/dinov2/dinov2/data/datasets/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..7b537aee8fe31d7e0fa06713d2cfe9233ff0ef60
--- /dev/null
+++ b/dinov2/dinov2/data/datasets/__init__.py
@@ -0,0 +1,8 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from .image_net import ImageNet
+from .image_net_22k import ImageNet22k
diff --git a/dinov2/dinov2/data/datasets/decoders.py b/dinov2/dinov2/data/datasets/decoders.py
new file mode 100644
index 0000000000000000000000000000000000000000..ec6daee223726ae655a20f6e0e94d71a1848be00
--- /dev/null
+++ b/dinov2/dinov2/data/datasets/decoders.py
@@ -0,0 +1,40 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from io import BytesIO
+from typing import Any, Tuple
+
+from PIL import Image
+
+
+class Decoder:
+ def decode(self) -> Any:
+ raise NotImplementedError
+
+
+class ImageDataDecoder(Decoder):
+ def __init__(self, image_data: bytes) -> None:
+ self._image_data = image_data
+
+ def decode(self) -> Image:
+ f = BytesIO(self._image_data)
+ return Image.open(f).convert(mode="RGB")
+
+
+class TargetDecoder(Decoder):
+ def __init__(self, target: Any):
+ self._target = target
+
+ def decode(self) -> Any:
+ return self._target
+
+
+class TupleDecoder(Decoder):
+ def __init__(self, *decoders: Decoder):
+ self._decoders: Tuple[Decoder, ...] = decoders
+
+ def decode(self) -> Any:
+ return (decoder.decode() for decoder in self._decoders)
diff --git a/dinov2/dinov2/data/datasets/extended.py b/dinov2/dinov2/data/datasets/extended.py
new file mode 100644
index 0000000000000000000000000000000000000000..41894632340574b8a4f363d51bdea47594554ff9
--- /dev/null
+++ b/dinov2/dinov2/data/datasets/extended.py
@@ -0,0 +1,47 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import Any, Tuple
+
+from torchvision.datasets import VisionDataset
+
+from .decoders import Decoder, TargetDecoder, ImageDataDecoder, TupleDecoder
+
+
+class ExtendedVisionDataset(VisionDataset):
+ def __init__(self, *args, **kwargs) -> None:
+ super().__init__(*args, **kwargs) # type: ignore
+
+ def get_image_data(self, index: int) -> bytes:
+ raise NotImplementedError
+
+ def get_target(self, index: int) -> Any:
+ raise NotImplementedError
+
+ def __getitem__(self, index: int) -> Tuple[Any, Any]:
+ try:
+ image_data = self.get_image_data(index)
+ image = ImageDataDecoder(image_data).decode()
+ except Exception as e:
+ raise RuntimeError(f"can not read image for sample {index}") from e
+ target = self.get_target(index)
+ target = TargetDecoder(target).decode()
+
+ if self.transforms is not None:
+ image, target = self.transforms(image, target)
+
+ return image, target
+
+ def get_sample_decoder(self, index: int) -> Decoder:
+ image_data = self.get_image_data(index)
+ target = self.get_target(index)
+ return TupleDecoder(
+ ImageDataDecoder(image_data),
+ TargetDecoder(target),
+ )
+
+ def __len__(self) -> int:
+ raise NotImplementedError
diff --git a/dinov2/dinov2/data/datasets/image_net.py b/dinov2/dinov2/data/datasets/image_net.py
new file mode 100644
index 0000000000000000000000000000000000000000..a72407bce2e3f5c186a873b1086fad02158f9ac7
--- /dev/null
+++ b/dinov2/dinov2/data/datasets/image_net.py
@@ -0,0 +1,251 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import csv
+from enum import Enum
+import os
+from typing import Callable, List, Optional, Tuple, Union
+
+import numpy as np
+
+from .extended import ExtendedVisionDataset
+
+
+_Labels = int
+
+
+class _Split(Enum):
+ TRAIN = "train"
+ VAL = "val"
+ TEST = "test" # NOTE: torchvision does not support the test split
+
+ @property
+ def length(self) -> int:
+ split_lengths = {
+ _Split.TRAIN: 1_281_167,
+ _Split.VAL: 50_000,
+ _Split.TEST: 100_000,
+ }
+ return split_lengths[self]
+
+ def get_dirname(self, class_id: Optional[str] = None) -> str:
+ return self.value if class_id is None else os.path.join(self.value, class_id)
+
+ def get_image_relpath(self, actual_index: int, class_id: Optional[str] = None) -> str:
+ dirname = self.get_dirname(class_id)
+ if self == _Split.TRAIN:
+ basename = f"{class_id}_{actual_index}"
+ else: # self in (_Split.VAL, _Split.TEST):
+ basename = f"ILSVRC2012_{self.value}_{actual_index:08d}"
+ return os.path.join(dirname, basename + ".JPEG")
+
+ def parse_image_relpath(self, image_relpath: str) -> Tuple[str, int]:
+ assert self != _Split.TEST
+ dirname, filename = os.path.split(image_relpath)
+ class_id = os.path.split(dirname)[-1]
+ basename, _ = os.path.splitext(filename)
+ actual_index = int(basename.split("_")[-1])
+ return class_id, actual_index
+
+
+class ImageNet(ExtendedVisionDataset):
+ Labels = Union[_Labels]
+ Split = Union[_Split]
+
+ def __init__(
+ self,
+ *,
+ split: "ImageNet.Split",
+ root: str,
+ extra: str,
+ transforms: Optional[Callable] = None,
+ transform: Optional[Callable] = None,
+ target_transform: Optional[Callable] = None,
+ ) -> None:
+ super().__init__(root, transforms, transform, target_transform)
+ self._extra_root = extra
+
+ self._split = split
+
+ entries_path = self._get_entries_path(split, root)
+ self._entries = self._load_extra(entries_path)
+
+ self._class_ids = None
+ self._class_names = None
+
+ if split == _Split.TEST:
+ return
+
+ class_ids_path = self._get_class_ids_path(split, root)
+ self._class_ids = self._load_extra(class_ids_path)
+
+ class_names_path = self._get_class_names_path(split, root)
+ self._class_names = self._load_extra(class_names_path)
+
+ @property
+ def split(self) -> "ImageNet.Split":
+ return self._split
+
+ def _load_extra(self, extra_path: str) -> np.ndarray:
+ extra_root = self._extra_root
+ extra_full_path = os.path.join(extra_root, extra_path)
+ return np.load(extra_full_path, mmap_mode="r")
+
+ def _save_extra(self, extra_array: np.ndarray, extra_path: str) -> None:
+ extra_root = self._extra_root
+ extra_full_path = os.path.join(extra_root, extra_path)
+ os.makedirs(extra_root, exist_ok=True)
+ np.save(extra_full_path, extra_array)
+
+ def _get_entries_path(self, split: "ImageNet.Split", root: Optional[str] = None) -> str:
+ return f"entries-{split.value.upper()}.npy"
+
+ def _get_class_ids_path(self, split: "ImageNet.Split", root: Optional[str] = None) -> str:
+ return f"class-ids-{split.value.upper()}.npy"
+
+ def _get_class_names_path(self, split: "ImageNet.Split", root: Optional[str] = None) -> str:
+ return f"class-names-{split.value.upper()}.npy"
+
+ def find_class_id(self, class_index: int) -> str:
+ assert self._class_ids is not None
+ return str(self._class_ids[class_index])
+
+ def find_class_name(self, class_index: int) -> str:
+ assert self._class_names is not None
+ return str(self._class_names[class_index])
+
+ def get_image_data(self, index: int) -> bytes:
+ actual_index = self._entries[index]["actual_index"]
+ class_id = self.get_class_id(index)
+ image_relpath = self.split.get_image_relpath(actual_index, class_id)
+ image_full_path = os.path.join(self.root, image_relpath)
+ with open(image_full_path, mode="rb") as f:
+ image_data = f.read()
+ return image_data
+
+ def get_target(self, index: int) -> Optional[_Labels]:
+ class_index = self._entries[index]["class_index"]
+ return None if self.split == _Split.TEST else int(class_index)
+
+ def get_targets(self) -> Optional[np.ndarray]:
+ return None if self.split == _Split.TEST else self._entries["class_index"]
+
+ def get_class_id(self, index: int) -> Optional[str]:
+ class_id = self._entries[index]["class_id"]
+ return None if self.split == _Split.TEST else str(class_id)
+
+ def get_class_name(self, index: int) -> Optional[str]:
+ class_name = self._entries[index]["class_name"]
+ return None if self.split == _Split.TEST else str(class_name)
+
+ def __len__(self) -> int:
+ assert len(self._entries) == self.split.length
+ return len(self._entries)
+
+ def _load_labels(self, root: str) -> List[Tuple[str, str]]:
+ path = os.path.join(root, "labels.txt")
+ labels = []
+
+ try:
+ with open(path, "r") as f:
+ reader = csv.reader(f)
+ for row in reader:
+ class_id, class_name = row
+ labels.append((class_id, class_name))
+ except OSError as e:
+ raise RuntimeError(f'can not read labels file "{path}"') from e
+
+ return labels
+
+ def _dump_entries(self, split: "ImageNet.Split", root: Optional[str] = None) -> None:
+ # NOTE: Using torchvision ImageFolder for consistency
+ from torchvision.datasets import ImageFolder
+
+ root = self.root
+ labels = self._load_labels(root)
+
+ if split == ImageNet.Split.TEST:
+ dataset = None
+ sample_count = split.length
+ max_class_id_length, max_class_name_length = 0, 0
+ else:
+ dataset_root = os.path.join(root, split.get_dirname())
+ dataset = ImageFolder(dataset_root)
+ sample_count = len(dataset)
+ max_class_id_length, max_class_name_length = -1, -1
+ for sample in dataset.samples:
+ _, class_index = sample
+ class_id, class_name = labels[class_index]
+ max_class_id_length = max(len(class_id), max_class_id_length)
+ max_class_name_length = max(len(class_name), max_class_name_length)
+
+ dtype = np.dtype(
+ [
+ ("actual_index", " None:
+ if split == ImageNet.Split.TEST:
+ return
+
+ root = self.get_root(root)
+ entries_path = self._get_entries_path(split, root)
+ entries_array = self._load_extra(entries_path)
+
+ max_class_id_length, max_class_name_length, max_class_index = -1, -1, -1
+ for entry in entries_array:
+ class_index, class_id, class_name = (
+ entry["class_index"],
+ entry["class_id"],
+ entry["class_name"],
+ )
+ max_class_index = max(int(class_index), max_class_index)
+ max_class_id_length = max(len(str(class_id)), max_class_id_length)
+ max_class_name_length = max(len(str(class_name)), max_class_name_length)
+
+ class_count = max_class_index + 1
+ class_ids_array = np.empty(class_count, dtype=f"U{max_class_id_length}")
+ class_names_array = np.empty(class_count, dtype=f"U{max_class_name_length}")
+ for entry in entries_array:
+ class_index, class_id, class_name = (
+ entry["class_index"],
+ entry["class_id"],
+ entry["class_name"],
+ )
+ class_ids_array[class_index] = class_id
+ class_names_array[class_index] = class_name
+
+ class_ids_path = self._get_class_ids_path(split, root)
+ self._save_extra(class_ids_array, class_ids_path)
+
+ class_names_path = self._get_class_names_path(split, root)
+ self._save_extra(class_names_array, class_names_path)
+
+ def dump_extra(self, split: "ImageNet.Split", root: Optional[str] = None) -> None:
+ self._dump_entries(split, root)
+ self._dump_class_ids_and_names(split, root)
diff --git a/dinov2/dinov2/data/datasets/image_net_22k.py b/dinov2/dinov2/data/datasets/image_net_22k.py
new file mode 100644
index 0000000000000000000000000000000000000000..323ee6ff3ab3c31d42bcaac2558f97a55317ad73
--- /dev/null
+++ b/dinov2/dinov2/data/datasets/image_net_22k.py
@@ -0,0 +1,304 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from dataclasses import dataclass
+from enum import Enum
+from functools import lru_cache
+from gzip import GzipFile
+from io import BytesIO
+from mmap import ACCESS_READ, mmap
+import os
+from typing import Any, Callable, List, Optional, Set, Tuple
+import warnings
+
+import numpy as np
+
+from .extended import ExtendedVisionDataset
+
+
+_Labels = int
+
+_DEFAULT_MMAP_CACHE_SIZE = 16 # Warning: This can exhaust file descriptors
+_IMAGES_SUBDIR_IMAGENET_21KP = "062717"
+
+
+@dataclass
+class _ClassEntry:
+ block_offset: int
+ maybe_filename: Optional[str] = None
+
+
+@dataclass
+class _Entry:
+ class_index: int # noqa: E701
+ start_offset: int
+ end_offset: int
+ filename: str
+
+
+class _Split(Enum):
+ TRAIN = "train"
+ VAL = "val"
+
+ @property
+ def length(self) -> int:
+ return {
+ _Split.TRAIN: 11_797_647,
+ _Split.VAL: 561_050,
+ }[self]
+
+ def entries_path(self):
+ return f"imagenet21kp_{self.value}.txt"
+
+
+def _get_tarball_path(class_id: str) -> str:
+ return f"{class_id}.tar"
+
+
+def _make_mmap_tarball(tarballs_root: str, mmap_cache_size: int):
+ @lru_cache(maxsize=mmap_cache_size)
+ def _mmap_tarball(class_id: str) -> mmap:
+ tarball_path = _get_tarball_path(class_id)
+ tarball_full_path = os.path.join(tarballs_root, tarball_path)
+ with open(tarball_full_path) as f:
+ return mmap(fileno=f.fileno(), length=0, access=ACCESS_READ)
+
+ return _mmap_tarball
+
+
+class ImageNet22k(ExtendedVisionDataset):
+ _GZIPPED_INDICES: Set[int] = {
+ 841_545,
+ 1_304_131,
+ 2_437_921,
+ 2_672_079,
+ 2_795_676,
+ 2_969_786,
+ 6_902_965,
+ 6_903_550,
+ 6_903_628,
+ 7_432_557,
+ 7_432_589,
+ 7_813_809,
+ 8_329_633,
+ 10_296_990,
+ 10_417_652,
+ 10_492_265,
+ 10_598_078,
+ 10_782_398,
+ 10_902_612,
+ 11_203_736,
+ 11_342_890,
+ 11_397_596,
+ 11_589_762,
+ 11_705_103,
+ 12_936_875,
+ 13_289_782,
+ }
+ Labels = _Labels
+
+ def __init__(
+ self,
+ *,
+ root: str,
+ extra: str,
+ transforms: Optional[Callable] = None,
+ transform: Optional[Callable] = None,
+ target_transform: Optional[Callable] = None,
+ mmap_cache_size: int = _DEFAULT_MMAP_CACHE_SIZE,
+ ) -> None:
+ super().__init__(root, transforms, transform, target_transform)
+ self._extra_root = extra
+
+ entries_path = self._get_entries_path(root)
+ self._entries = self._load_extra(entries_path)
+
+ class_ids_path = self._get_class_ids_path(root)
+ self._class_ids = self._load_extra(class_ids_path)
+
+ self._gzipped_indices = ImageNet22k._GZIPPED_INDICES
+ self._mmap_tarball = _make_mmap_tarball(self._tarballs_root, mmap_cache_size)
+
+ def _get_entries_path(self, root: Optional[str] = None) -> str:
+ return "entries.npy"
+
+ def _get_class_ids_path(self, root: Optional[str] = None) -> str:
+ return "class-ids.npy"
+
+ def _find_class_ids(self, path: str) -> List[str]:
+ class_ids = []
+
+ with os.scandir(path) as entries:
+ for entry in entries:
+ root, ext = os.path.splitext(entry.name)
+ if ext != ".tar":
+ continue
+ class_ids.append(root)
+
+ return sorted(class_ids)
+
+ def _load_entries_class_ids(self, root: Optional[str] = None) -> Tuple[List[_Entry], List[str]]:
+ root = self.get_root(root)
+ entries: List[_Entry] = []
+ class_ids = self._find_class_ids(root)
+
+ for class_index, class_id in enumerate(class_ids):
+ path = os.path.join(root, "blocks", f"{class_id}.log")
+ class_entries = []
+
+ try:
+ with open(path) as f:
+ for line in f:
+ line = line.rstrip()
+ block, filename = line.split(":")
+ block_offset = int(block[6:])
+ filename = filename[1:]
+
+ maybe_filename = None
+ if filename != "** Block of NULs **":
+ maybe_filename = filename
+ _, ext = os.path.splitext(filename)
+ # assert ext == ".JPEG"
+
+ class_entry = _ClassEntry(block_offset, maybe_filename)
+ class_entries.append(class_entry)
+ except OSError as e:
+ raise RuntimeError(f'can not read blocks file "{path}"') from e
+
+ assert class_entries[-1].maybe_filename is None
+
+ for class_entry1, class_entry2 in zip(class_entries, class_entries[1:]):
+ assert class_entry1.block_offset <= class_entry2.block_offset
+ start_offset = 512 * class_entry1.block_offset
+ end_offset = 512 * class_entry2.block_offset
+ assert class_entry1.maybe_filename is not None
+ filename = class_entry1.maybe_filename
+ entry = _Entry(class_index, start_offset, end_offset, filename)
+ # Skip invalid image files (PIL throws UnidentifiedImageError)
+ if filename == "n06470073_47249.JPEG":
+ continue
+ entries.append(entry)
+
+ return entries, class_ids
+
+ def _load_extra(self, extra_path: str) -> np.ndarray:
+ extra_root = self._extra_root
+ extra_full_path = os.path.join(extra_root, extra_path)
+ return np.load(extra_full_path, mmap_mode="r")
+
+ def _save_extra(self, extra_array: np.ndarray, extra_path: str) -> None:
+ extra_root = self._extra_root
+ extra_full_path = os.path.join(extra_root, extra_path)
+ os.makedirs(extra_root, exist_ok=True)
+ np.save(extra_full_path, extra_array)
+
+ @property
+ def _tarballs_root(self) -> str:
+ return self.root
+
+ def find_class_id(self, class_index: int) -> str:
+ return str(self._class_ids[class_index])
+
+ def get_image_data(self, index: int) -> bytes:
+ entry = self._entries[index]
+ class_id = entry["class_id"]
+ class_mmap = self._mmap_tarball(class_id)
+
+ start_offset, end_offset = entry["start_offset"], entry["end_offset"]
+ try:
+ mapped_data = class_mmap[start_offset:end_offset]
+ data = mapped_data[512:] # Skip entry header block
+
+ if len(data) >= 2 and tuple(data[:2]) == (0x1F, 0x8B):
+ assert index in self._gzipped_indices, f"unexpected gzip header for sample {index}"
+ with GzipFile(fileobj=BytesIO(data)) as g:
+ data = g.read()
+ except Exception as e:
+ raise RuntimeError(f"can not retrieve image data for sample {index} " f'from "{class_id}" tarball') from e
+
+ return data
+
+ def get_target(self, index: int) -> Any:
+ return int(self._entries[index]["class_index"])
+
+ def get_targets(self) -> np.ndarray:
+ return self._entries["class_index"]
+
+ def get_class_id(self, index: int) -> str:
+ return str(self._entries[index]["class_id"])
+
+ def get_class_ids(self) -> np.ndarray:
+ return self._entries["class_id"]
+
+ def __getitem__(self, index: int) -> Tuple[Any, Any]:
+ with warnings.catch_warnings():
+ warnings.simplefilter("ignore")
+ return super().__getitem__(index)
+
+ def __len__(self) -> int:
+ return len(self._entries)
+
+ def _dump_entries(self, *args, **kwargs) -> None:
+ entries, class_ids = self._load_entries_class_ids(*args, **kwargs)
+
+ max_class_id_length, max_filename_length, max_class_index = -1, -1, -1
+ for entry in entries:
+ class_id = class_ids[entry.class_index]
+ max_class_index = max(entry.class_index, max_class_index)
+ max_class_id_length = max(len(class_id), max_class_id_length)
+ max_filename_length = max(len(entry.filename), max_filename_length)
+
+ dtype = np.dtype(
+ [
+ ("class_index", " None:
+ entries_path = self._get_entries_path(*args, **kwargs)
+ entries_array = self._load_extra(entries_path)
+
+ max_class_id_length, max_class_index = -1, -1
+ for entry in entries_array:
+ class_index, class_id = entry["class_index"], entry["class_id"]
+ max_class_index = max(int(class_index), max_class_index)
+ max_class_id_length = max(len(str(class_id)), max_class_id_length)
+
+ class_ids_array = np.empty(max_class_index + 1, dtype=f"U{max_class_id_length}")
+ for entry in entries_array:
+ class_index, class_id = entry["class_index"], entry["class_id"]
+ class_ids_array[class_index] = class_id
+ class_ids_path = self._get_class_ids_path(*args, **kwargs)
+ self._save_extra(class_ids_array, class_ids_path)
+
+ def _dump_extra(self, *args, **kwargs) -> None:
+ self._dump_entries(*args, *kwargs)
+ self._dump_class_ids(*args, *kwargs)
+
+ def dump_extra(self, root: Optional[str] = None) -> None:
+ return self._dump_extra(root)
diff --git a/dinov2/dinov2/data/loaders.py b/dinov2/dinov2/data/loaders.py
new file mode 100644
index 0000000000000000000000000000000000000000..9fb6f25a0a3c3251b803f48d0a515aa0b9591226
--- /dev/null
+++ b/dinov2/dinov2/data/loaders.py
@@ -0,0 +1,223 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+from enum import Enum
+from typing import Any, Callable, List, Optional, TypeVar
+
+import torch
+from torch.utils.data import Sampler
+
+from .datasets import ImageNet, ImageNet22k
+from .samplers import EpochSampler, InfiniteSampler, ShardedInfiniteSampler
+
+
+logger = logging.getLogger("dinov2")
+
+
+class SamplerType(Enum):
+ DISTRIBUTED = 0
+ EPOCH = 1
+ INFINITE = 2
+ SHARDED_INFINITE = 3
+ SHARDED_INFINITE_NEW = 4
+
+
+def _make_bool_str(b: bool) -> str:
+ return "yes" if b else "no"
+
+
+def _make_sample_transform(image_transform: Optional[Callable] = None, target_transform: Optional[Callable] = None):
+ def transform(sample):
+ image, target = sample
+ if image_transform is not None:
+ image = image_transform(image)
+ if target_transform is not None:
+ target = target_transform(target)
+ return image, target
+
+ return transform
+
+
+def _parse_dataset_str(dataset_str: str):
+ tokens = dataset_str.split(":")
+
+ name = tokens[0]
+ kwargs = {}
+
+ for token in tokens[1:]:
+ key, value = token.split("=")
+ assert key in ("root", "extra", "split")
+ kwargs[key] = value
+
+ if name == "ImageNet":
+ class_ = ImageNet
+ if "split" in kwargs:
+ kwargs["split"] = ImageNet.Split[kwargs["split"]]
+ elif name == "ImageNet22k":
+ class_ = ImageNet22k
+ else:
+ raise ValueError(f'Unsupported dataset "{name}"')
+
+ return class_, kwargs
+
+
+def make_dataset(
+ *,
+ dataset_str: str,
+ transform: Optional[Callable] = None,
+ target_transform: Optional[Callable] = None,
+):
+ """
+ Creates a dataset with the specified parameters.
+
+ Args:
+ dataset_str: A dataset string description (e.g. ImageNet:split=TRAIN).
+ transform: A transform to apply to images.
+ target_transform: A transform to apply to targets.
+
+ Returns:
+ The created dataset.
+ """
+ logger.info(f'using dataset: "{dataset_str}"')
+
+ class_, kwargs = _parse_dataset_str(dataset_str)
+ dataset = class_(transform=transform, target_transform=target_transform, **kwargs)
+
+ logger.info(f"# of dataset samples: {len(dataset):,d}")
+
+ # Aggregated datasets do not expose (yet) these attributes, so add them.
+ if not hasattr(dataset, "transform"):
+ setattr(dataset, "transform", transform)
+ if not hasattr(dataset, "target_transform"):
+ setattr(dataset, "target_transform", target_transform)
+
+ return dataset
+
+
+def _make_sampler(
+ *,
+ dataset,
+ type: Optional[SamplerType] = None,
+ shuffle: bool = False,
+ seed: int = 0,
+ size: int = -1,
+ advance: int = 0,
+) -> Optional[Sampler]:
+ sample_count = len(dataset)
+
+ if type == SamplerType.INFINITE:
+ logger.info("sampler: infinite")
+ if size > 0:
+ raise ValueError("sampler size > 0 is invalid")
+ return InfiniteSampler(
+ sample_count=sample_count,
+ shuffle=shuffle,
+ seed=seed,
+ advance=advance,
+ )
+ elif type in (SamplerType.SHARDED_INFINITE, SamplerType.SHARDED_INFINITE_NEW):
+ logger.info("sampler: sharded infinite")
+ if size > 0:
+ raise ValueError("sampler size > 0 is invalid")
+ # TODO: Remove support for old shuffling
+ use_new_shuffle_tensor_slice = type == SamplerType.SHARDED_INFINITE_NEW
+ return ShardedInfiniteSampler(
+ sample_count=sample_count,
+ shuffle=shuffle,
+ seed=seed,
+ advance=advance,
+ use_new_shuffle_tensor_slice=use_new_shuffle_tensor_slice,
+ )
+ elif type == SamplerType.EPOCH:
+ logger.info("sampler: epoch")
+ if advance > 0:
+ raise NotImplementedError("sampler advance > 0 is not supported")
+ size = size if size > 0 else sample_count
+ logger.info(f"# of samples / epoch: {size:,d}")
+ return EpochSampler(
+ size=size,
+ sample_count=sample_count,
+ shuffle=shuffle,
+ seed=seed,
+ )
+ elif type == SamplerType.DISTRIBUTED:
+ logger.info("sampler: distributed")
+ if size > 0:
+ raise ValueError("sampler size > 0 is invalid")
+ if advance > 0:
+ raise ValueError("sampler advance > 0 is invalid")
+ return torch.utils.data.DistributedSampler(
+ dataset=dataset,
+ shuffle=shuffle,
+ seed=seed,
+ drop_last=False,
+ )
+
+ logger.info("sampler: none")
+ return None
+
+
+T = TypeVar("T")
+
+
+def make_data_loader(
+ *,
+ dataset,
+ batch_size: int,
+ num_workers: int,
+ shuffle: bool = True,
+ seed: int = 0,
+ sampler_type: Optional[SamplerType] = SamplerType.INFINITE,
+ sampler_size: int = -1,
+ sampler_advance: int = 0,
+ drop_last: bool = True,
+ persistent_workers: bool = False,
+ collate_fn: Optional[Callable[[List[T]], Any]] = None,
+):
+ """
+ Creates a data loader with the specified parameters.
+
+ Args:
+ dataset: A dataset (third party, LaViDa or WebDataset).
+ batch_size: The size of batches to generate.
+ num_workers: The number of workers to use.
+ shuffle: Whether to shuffle samples.
+ seed: The random seed to use.
+ sampler_type: Which sampler to use: EPOCH, INFINITE, SHARDED_INFINITE, SHARDED_INFINITE_NEW, DISTRIBUTED or None.
+ sampler_size: The number of images per epoch (when applicable) or -1 for the entire dataset.
+ sampler_advance: How many samples to skip (when applicable).
+ drop_last: Whether the last non-full batch of data should be dropped.
+ persistent_workers: maintain the workers Dataset instances alive after a dataset has been consumed once.
+ collate_fn: Function that performs batch collation
+ """
+
+ sampler = _make_sampler(
+ dataset=dataset,
+ type=sampler_type,
+ shuffle=shuffle,
+ seed=seed,
+ size=sampler_size,
+ advance=sampler_advance,
+ )
+
+ logger.info("using PyTorch data loader")
+ data_loader = torch.utils.data.DataLoader(
+ dataset,
+ sampler=sampler,
+ batch_size=batch_size,
+ num_workers=num_workers,
+ pin_memory=True,
+ drop_last=drop_last,
+ persistent_workers=persistent_workers,
+ collate_fn=collate_fn,
+ )
+
+ try:
+ logger.info(f"# of batches: {len(data_loader):,d}")
+ except TypeError: # data loader has no length
+ logger.info("infinite data loader")
+ return data_loader
diff --git a/dinov2/dinov2/data/masking.py b/dinov2/dinov2/data/masking.py
new file mode 100644
index 0000000000000000000000000000000000000000..dc3c72648c3e440dcdb284366b98d2df12ad1272
--- /dev/null
+++ b/dinov2/dinov2/data/masking.py
@@ -0,0 +1,87 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import random
+import math
+import numpy as np
+
+
+class MaskingGenerator:
+ def __init__(
+ self,
+ input_size,
+ num_masking_patches=None,
+ min_num_patches=4,
+ max_num_patches=None,
+ min_aspect=0.3,
+ max_aspect=None,
+ ):
+ if not isinstance(input_size, tuple):
+ input_size = (input_size,) * 2
+ self.height, self.width = input_size
+
+ self.num_patches = self.height * self.width
+ self.num_masking_patches = num_masking_patches
+
+ self.min_num_patches = min_num_patches
+ self.max_num_patches = num_masking_patches if max_num_patches is None else max_num_patches
+
+ max_aspect = max_aspect or 1 / min_aspect
+ self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect))
+
+ def __repr__(self):
+ repr_str = "Generator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % (
+ self.height,
+ self.width,
+ self.min_num_patches,
+ self.max_num_patches,
+ self.num_masking_patches,
+ self.log_aspect_ratio[0],
+ self.log_aspect_ratio[1],
+ )
+ return repr_str
+
+ def get_shape(self):
+ return self.height, self.width
+
+ def _mask(self, mask, max_mask_patches):
+ delta = 0
+ for _ in range(10):
+ target_area = random.uniform(self.min_num_patches, max_mask_patches)
+ aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
+ h = int(round(math.sqrt(target_area * aspect_ratio)))
+ w = int(round(math.sqrt(target_area / aspect_ratio)))
+ if w < self.width and h < self.height:
+ top = random.randint(0, self.height - h)
+ left = random.randint(0, self.width - w)
+
+ num_masked = mask[top : top + h, left : left + w].sum()
+ # Overlap
+ if 0 < h * w - num_masked <= max_mask_patches:
+ for i in range(top, top + h):
+ for j in range(left, left + w):
+ if mask[i, j] == 0:
+ mask[i, j] = 1
+ delta += 1
+
+ if delta > 0:
+ break
+ return delta
+
+ def __call__(self, num_masking_patches=0):
+ mask = np.zeros(shape=self.get_shape(), dtype=bool)
+ mask_count = 0
+ while mask_count < num_masking_patches:
+ max_mask_patches = num_masking_patches - mask_count
+ max_mask_patches = min(max_mask_patches, self.max_num_patches)
+
+ delta = self._mask(mask, max_mask_patches)
+ if delta == 0:
+ break
+ else:
+ mask_count += delta
+
+ return mask
diff --git a/dinov2/dinov2/data/samplers.py b/dinov2/dinov2/data/samplers.py
new file mode 100644
index 0000000000000000000000000000000000000000..e356edf603a33ce2d18a388fd799694e22d1980f
--- /dev/null
+++ b/dinov2/dinov2/data/samplers.py
@@ -0,0 +1,230 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import itertools
+from typing import Any, Optional
+import warnings
+
+import numpy as np
+import torch
+from torch.utils.data.sampler import Sampler
+
+import dinov2.distributed as distributed
+
+
+class EpochSampler(Sampler):
+ def __init__(
+ self,
+ *,
+ size: int,
+ sample_count: int,
+ shuffle: bool = False,
+ seed: int = 0,
+ start: Optional[int] = None,
+ step: Optional[int] = None,
+ ):
+ self._size = size
+ self._sample_count = sample_count
+ self._shuffle = shuffle
+ self._seed = seed
+ self._start = distributed.get_global_rank() if start is None else start
+ self._step = distributed.get_global_size() if step is None else step
+ self._epoch = 0
+
+ def __iter__(self):
+ count = (self._size + self._sample_count - 1) // self._sample_count
+ tiled_indices = np.tile(np.arange(self._sample_count), count)
+ if self._shuffle:
+ seed = self._seed * self._epoch if self._seed != 0 else self._epoch
+ rng = np.random.default_rng(seed)
+ iterable = rng.choice(tiled_indices, self._size, replace=False)
+ else:
+ iterable = tiled_indices[: self._size]
+
+ yield from itertools.islice(iterable, self._start, None, self._step)
+
+ def __len__(self):
+ return (self._size - self._start + self._step - 1) // self._step
+
+ def set_epoch(self, epoch):
+ self._epoch = epoch
+
+
+def _get_numpy_dtype(size: int) -> Any:
+ return np.int32 if size <= 2**31 else np.int64
+
+
+def _get_torch_dtype(size: int) -> Any:
+ return torch.int32 if size <= 2**31 else torch.int64
+
+
+def _generate_randperm_indices(*, size: int, generator: torch.Generator):
+ """Generate the indices of a random permutation."""
+ dtype = _get_torch_dtype(size)
+ # This is actually matching PyTorch's CPU implementation, see: https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/TensorFactories.cpp#L900-L921
+ perm = torch.arange(size, dtype=dtype)
+ for i in range(size):
+ j = torch.randint(i, size, size=(1,), generator=generator).item()
+
+ # Always swap even if no-op
+ value = perm[j].item()
+ perm[j] = perm[i].item()
+ perm[i] = value
+ yield value
+
+
+class InfiniteSampler(Sampler):
+ def __init__(
+ self,
+ *,
+ sample_count: int,
+ shuffle: bool = False,
+ seed: int = 0,
+ start: Optional[int] = None,
+ step: Optional[int] = None,
+ advance: int = 0,
+ ):
+ self._sample_count = sample_count
+ self._seed = seed
+ self._shuffle = shuffle
+ self._start = distributed.get_global_rank() if start is None else start
+ self._step = distributed.get_global_size() if step is None else step
+ self._advance = advance
+
+ def __iter__(self):
+ if self._shuffle:
+ iterator = self._shuffled_iterator()
+ else:
+ iterator = self._iterator()
+
+ yield from itertools.islice(iterator, self._advance, None)
+
+ def _iterator(self):
+ assert not self._shuffle
+
+ while True:
+ iterable = range(self._sample_count)
+ yield from itertools.islice(iterable, self._start, None, self._step)
+
+ def _shuffled_iterator(self):
+ assert self._shuffle
+
+ # Instantiate a generator here (rather than in the ctor) to keep the class
+ # picklable (requirement of mp.spawn)
+ generator = torch.Generator().manual_seed(self._seed)
+
+ while True:
+ iterable = _generate_randperm_indices(size=self._sample_count, generator=generator)
+ yield from itertools.islice(iterable, self._start, None, self._step)
+
+
+# The following function is somewhat equivalent to _new_shuffle_tensor_slice below,
+# but avoids a full in-place random permutation generation.
+def _shuffle_tensor_slice(
+ *, tensor: torch.Tensor, start: int = 0, step: int = 1, generator: torch.Generator
+) -> np.ndarray:
+ stop = len(tensor)
+ count = stop // step
+ drop_count = stop - step * count
+ if drop_count:
+ warnings.warn(f"# of dropped samples: {drop_count}")
+
+ dtype = _get_numpy_dtype(stop)
+ result = np.empty(count, dtype=dtype)
+
+ for i in range(count):
+ j = torch.randint(0, i + 1, size=(1,), generator=generator).item() if i > 0 else 0
+
+ result[i] = result[j]
+ result[j] = tensor[start + i * step].item()
+
+ return result
+
+
+def _new_shuffle_tensor_slice(
+ *, tensor: torch.Tensor, start: int = 0, step: int = 1, generator: torch.Generator
+) -> np.ndarray:
+ stop = len(tensor)
+ count = stop // step
+ dtype = torch.int64 # Needed for using randperm result as indices
+ count = stop // step
+ drop_count = stop - step * count
+ if drop_count:
+ warnings.warn(f"# of dropped samples: {drop_count}")
+ indices = torch.randperm(count, dtype=dtype, generator=generator)
+ return tensor[start::step][indices].numpy()
+
+
+def _make_seed(seed: int, start: int, iter_count: int) -> int:
+ # NOTE: Tried a few variants (including iter_count << 32), this one worked best.
+ return seed + start + (iter_count << 24)
+
+
+class ShardedInfiniteSampler(Sampler):
+ def __init__(
+ self,
+ *,
+ sample_count: int,
+ shuffle: bool = False,
+ seed: int = 0,
+ start: Optional[int] = None,
+ step: Optional[int] = None,
+ advance: int = 0,
+ use_new_shuffle_tensor_slice: bool = False,
+ ):
+ self._sample_count = sample_count
+ self._seed = seed
+ self._shuffle = shuffle
+ self._start = distributed.get_global_rank() if start is None else start
+ self._step = distributed.get_global_size() if step is None else step
+ self._advance = advance
+ self._iter_count = 0
+ self._shuffle_tensor_slice_fn = (
+ _new_shuffle_tensor_slice if use_new_shuffle_tensor_slice else _shuffle_tensor_slice
+ )
+
+ def __iter__(self):
+ iter_count = self._advance // self._sample_count
+ if iter_count > 0:
+ self._advance -= iter_count * self._sample_count
+ self._iter_count += iter_count
+
+ if self._shuffle:
+ iterator = self._shuffled_iterator()
+ else:
+ iterator = self._iterator()
+
+ yield from itertools.islice(iterator, self._advance, None)
+
+ def _iterator(self):
+ assert not self._shuffle
+
+ while True:
+ iterable = range(self._sample_count)
+ yield from itertools.islice(iterable, self._start, None, self._step)
+
+ def _shuffled_iterator(self):
+ assert self._shuffle
+
+ # Instantiate a generator here (rather than in the ctor) to be keep the class
+ # picklable (requirement of mp.spawn)
+ generator = torch.Generator()
+
+ # Always shuffle everything first
+ generator.manual_seed(self._seed)
+ dtype = _get_torch_dtype(self._sample_count)
+ perm = torch.randperm(self._sample_count, dtype=dtype, generator=generator)
+
+ while True:
+ # Re-seed on each iteration to allow skipping whole permutations
+ seed = _make_seed(self._seed, self._start, self._iter_count)
+ generator.manual_seed(seed)
+
+ iterable = self._shuffle_tensor_slice_fn(
+ tensor=perm, start=self._start, step=self._step, generator=generator
+ )
+ yield from iterable
+ self._iter_count += 1
diff --git a/dinov2/dinov2/data/transforms.py b/dinov2/dinov2/data/transforms.py
new file mode 100644
index 0000000000000000000000000000000000000000..f1bc4cbd1a459a9f44314806cf9ccedea112ab14
--- /dev/null
+++ b/dinov2/dinov2/data/transforms.py
@@ -0,0 +1,92 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import Sequence
+
+import torch
+from torchvision import transforms
+
+
+class GaussianBlur(transforms.RandomApply):
+ """
+ Apply Gaussian Blur to the PIL image.
+ """
+
+ def __init__(self, *, p: float = 0.5, radius_min: float = 0.1, radius_max: float = 2.0):
+ # NOTE: torchvision is applying 1 - probability to return the original image
+ keep_p = 1 - p
+ transform = transforms.GaussianBlur(kernel_size=9, sigma=(radius_min, radius_max))
+ super().__init__(transforms=[transform], p=keep_p)
+
+
+class MaybeToTensor(transforms.ToTensor):
+ """
+ Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor, or keep as is if already a tensor.
+ """
+
+ def __call__(self, pic):
+ """
+ Args:
+ pic (PIL Image, numpy.ndarray or torch.tensor): Image to be converted to tensor.
+ Returns:
+ Tensor: Converted image.
+ """
+ if isinstance(pic, torch.Tensor):
+ return pic
+ return super().__call__(pic)
+
+
+# Use timm's names
+IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
+IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
+
+
+def make_normalize_transform(
+ mean: Sequence[float] = IMAGENET_DEFAULT_MEAN,
+ std: Sequence[float] = IMAGENET_DEFAULT_STD,
+) -> transforms.Normalize:
+ return transforms.Normalize(mean=mean, std=std)
+
+
+# This roughly matches torchvision's preset for classification training:
+# https://github.com/pytorch/vision/blob/main/references/classification/presets.py#L6-L44
+def make_classification_train_transform(
+ *,
+ crop_size: int = 224,
+ interpolation=transforms.InterpolationMode.BICUBIC,
+ hflip_prob: float = 0.5,
+ mean: Sequence[float] = IMAGENET_DEFAULT_MEAN,
+ std: Sequence[float] = IMAGENET_DEFAULT_STD,
+):
+ transforms_list = [transforms.RandomResizedCrop(crop_size, interpolation=interpolation)]
+ if hflip_prob > 0.0:
+ transforms_list.append(transforms.RandomHorizontalFlip(hflip_prob))
+ transforms_list.extend(
+ [
+ MaybeToTensor(),
+ make_normalize_transform(mean=mean, std=std),
+ ]
+ )
+ return transforms.Compose(transforms_list)
+
+
+# This matches (roughly) torchvision's preset for classification evaluation:
+# https://github.com/pytorch/vision/blob/main/references/classification/presets.py#L47-L69
+def make_classification_eval_transform(
+ *,
+ resize_size: int = 256,
+ interpolation=transforms.InterpolationMode.BICUBIC,
+ crop_size: int = 224,
+ mean: Sequence[float] = IMAGENET_DEFAULT_MEAN,
+ std: Sequence[float] = IMAGENET_DEFAULT_STD,
+) -> transforms.Compose:
+ transforms_list = [
+ transforms.Resize(resize_size, interpolation=interpolation),
+ transforms.CenterCrop(crop_size),
+ MaybeToTensor(),
+ make_normalize_transform(mean=mean, std=std),
+ ]
+ return transforms.Compose(transforms_list)
diff --git a/dinov2/dinov2/distributed/__init__.py b/dinov2/dinov2/distributed/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..4ccd663f33d5a21ad1f9d25db7bd378ec52aeac2
--- /dev/null
+++ b/dinov2/dinov2/distributed/__init__.py
@@ -0,0 +1,271 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import os
+import random
+import re
+import socket
+from typing import Dict, List
+
+import torch
+import torch.distributed as dist
+
+_LOCAL_RANK = -1
+_LOCAL_WORLD_SIZE = -1
+
+
+def is_enabled() -> bool:
+ """
+ Returns:
+ True if distributed training is enabled
+ """
+ return dist.is_available() and dist.is_initialized()
+
+
+def get_global_size() -> int:
+ """
+ Returns:
+ The number of processes in the process group
+ """
+ return dist.get_world_size() if is_enabled() else 1
+
+
+def get_global_rank() -> int:
+ """
+ Returns:
+ The rank of the current process within the global process group.
+ """
+ return dist.get_rank() if is_enabled() else 0
+
+
+def get_local_rank() -> int:
+ """
+ Returns:
+ The rank of the current process within the local (per-machine) process group.
+ """
+ if not is_enabled():
+ return 0
+ assert 0 <= _LOCAL_RANK < _LOCAL_WORLD_SIZE
+ return _LOCAL_RANK
+
+
+def get_local_size() -> int:
+ """
+ Returns:
+ The size of the per-machine process group,
+ i.e. the number of processes per machine.
+ """
+ if not is_enabled():
+ return 1
+ assert 0 <= _LOCAL_RANK < _LOCAL_WORLD_SIZE
+ return _LOCAL_WORLD_SIZE
+
+
+def is_main_process() -> bool:
+ """
+ Returns:
+ True if the current process is the main one.
+ """
+ return get_global_rank() == 0
+
+
+def _restrict_print_to_main_process() -> None:
+ """
+ This function disables printing when not in the main process
+ """
+ import builtins as __builtin__
+
+ builtin_print = __builtin__.print
+
+ def print(*args, **kwargs):
+ force = kwargs.pop("force", False)
+ if is_main_process() or force:
+ builtin_print(*args, **kwargs)
+
+ __builtin__.print = print
+
+
+def _get_master_port(seed: int = 0) -> int:
+ MIN_MASTER_PORT, MAX_MASTER_PORT = (20_000, 60_000)
+
+ master_port_str = os.environ.get("MASTER_PORT")
+ if master_port_str is None:
+ rng = random.Random(seed)
+ return rng.randint(MIN_MASTER_PORT, MAX_MASTER_PORT)
+
+ return int(master_port_str)
+
+
+def _get_available_port() -> int:
+ with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
+ # A "" host address means INADDR_ANY i.e. binding to all interfaces.
+ # Note this is not compatible with IPv6.
+ s.bind(("", 0))
+ port = s.getsockname()[1]
+ return port
+
+
+_TORCH_DISTRIBUTED_ENV_VARS = (
+ "MASTER_ADDR",
+ "MASTER_PORT",
+ "RANK",
+ "WORLD_SIZE",
+ "LOCAL_RANK",
+ "LOCAL_WORLD_SIZE",
+)
+
+
+def _collect_env_vars() -> Dict[str, str]:
+ return {env_var: os.environ[env_var] for env_var in _TORCH_DISTRIBUTED_ENV_VARS if env_var in os.environ}
+
+
+def _is_slurm_job_process() -> bool:
+ return "SLURM_JOB_ID" in os.environ
+
+
+def _parse_slurm_node_list(s: str) -> List[str]:
+ nodes = []
+ # Extract "hostname", "hostname[1-2,3,4-5]," substrings
+ p = re.compile(r"(([^\[]+)(?:\[([^\]]+)\])?),?")
+ for m in p.finditer(s):
+ prefix, suffixes = s[m.start(2) : m.end(2)], s[m.start(3) : m.end(3)]
+ for suffix in suffixes.split(","):
+ span = suffix.split("-")
+ if len(span) == 1:
+ nodes.append(prefix + suffix)
+ else:
+ width = len(span[0])
+ start, end = int(span[0]), int(span[1]) + 1
+ nodes.extend([prefix + f"{i:0{width}}" for i in range(start, end)])
+ return nodes
+
+
+def _check_env_variable(key: str, new_value: str):
+ # Only check for difference with preset environment variables
+ if key in os.environ and os.environ[key] != new_value:
+ raise RuntimeError(f"Cannot export environment variables as {key} is already set")
+
+
+class _TorchDistributedEnvironment:
+ def __init__(self):
+ self.master_addr = "127.0.0.1"
+ self.master_port = 0
+ self.rank = -1
+ self.world_size = -1
+ self.local_rank = -1
+ self.local_world_size = -1
+
+ if _is_slurm_job_process():
+ return self._set_from_slurm_env()
+
+ env_vars = _collect_env_vars()
+ if not env_vars:
+ # Environment is not set
+ pass
+ elif len(env_vars) == len(_TORCH_DISTRIBUTED_ENV_VARS):
+ # Environment is fully set
+ return self._set_from_preset_env()
+ else:
+ # Environment is partially set
+ collected_env_vars = ", ".join(env_vars.keys())
+ raise RuntimeError(f"Partially set environment: {collected_env_vars}")
+
+ if torch.cuda.device_count() > 0:
+ return self._set_from_local()
+
+ raise RuntimeError("Can't initialize PyTorch distributed environment")
+
+ # Slurm job created with sbatch, submitit, etc...
+ def _set_from_slurm_env(self):
+ # logger.info("Initialization from Slurm environment")
+ job_id = int(os.environ["SLURM_JOB_ID"])
+ node_count = int(os.environ["SLURM_JOB_NUM_NODES"])
+ nodes = _parse_slurm_node_list(os.environ["SLURM_JOB_NODELIST"])
+ assert len(nodes) == node_count
+
+ self.master_addr = nodes[0]
+ self.master_port = _get_master_port(seed=job_id)
+ self.rank = int(os.environ["SLURM_PROCID"])
+ self.world_size = int(os.environ["SLURM_NTASKS"])
+ assert self.rank < self.world_size
+ self.local_rank = int(os.environ["SLURM_LOCALID"])
+ self.local_world_size = self.world_size // node_count
+ assert self.local_rank < self.local_world_size
+
+ # Single node job with preset environment (i.e. torchrun)
+ def _set_from_preset_env(self):
+ # logger.info("Initialization from preset environment")
+ self.master_addr = os.environ["MASTER_ADDR"]
+ self.master_port = os.environ["MASTER_PORT"]
+ self.rank = int(os.environ["RANK"])
+ self.world_size = int(os.environ["WORLD_SIZE"])
+ assert self.rank < self.world_size
+ self.local_rank = int(os.environ["LOCAL_RANK"])
+ self.local_world_size = int(os.environ["LOCAL_WORLD_SIZE"])
+ assert self.local_rank < self.local_world_size
+
+ # Single node and GPU job (i.e. local script run)
+ def _set_from_local(self):
+ # logger.info("Initialization from local")
+ self.master_addr = "127.0.0.1"
+ self.master_port = _get_available_port()
+ self.rank = 0
+ self.world_size = 1
+ self.local_rank = 0
+ self.local_world_size = 1
+
+ def export(self, *, overwrite: bool) -> "_TorchDistributedEnvironment":
+ # See the "Environment variable initialization" section from
+ # https://pytorch.org/docs/stable/distributed.html for the complete list of
+ # environment variables required for the env:// initialization method.
+ env_vars = {
+ "MASTER_ADDR": self.master_addr,
+ "MASTER_PORT": str(self.master_port),
+ "RANK": str(self.rank),
+ "WORLD_SIZE": str(self.world_size),
+ "LOCAL_RANK": str(self.local_rank),
+ "LOCAL_WORLD_SIZE": str(self.local_world_size),
+ }
+ if not overwrite:
+ for k, v in env_vars.items():
+ _check_env_variable(k, v)
+
+ os.environ.update(env_vars)
+ return self
+
+
+def enable(*, set_cuda_current_device: bool = True, overwrite: bool = False, allow_nccl_timeout: bool = False):
+ """Enable distributed mode
+
+ Args:
+ set_cuda_current_device: If True, call torch.cuda.set_device() to set the
+ current PyTorch CUDA device to the one matching the local rank.
+ overwrite: If True, overwrites already set variables. Else fails.
+ """
+
+ global _LOCAL_RANK, _LOCAL_WORLD_SIZE
+ if _LOCAL_RANK >= 0 or _LOCAL_WORLD_SIZE >= 0:
+ raise RuntimeError("Distributed mode has already been enabled")
+ torch_env = _TorchDistributedEnvironment()
+ torch_env.export(overwrite=overwrite)
+
+ if set_cuda_current_device:
+ torch.cuda.set_device(torch_env.local_rank)
+
+ if allow_nccl_timeout:
+ # This allows to use torch distributed timeout in a NCCL backend
+ key, value = "NCCL_ASYNC_ERROR_HANDLING", "1"
+ if not overwrite:
+ _check_env_variable(key, value)
+ os.environ[key] = value
+
+ dist.init_process_group(backend="nccl")
+ dist.barrier()
+
+ # Finalize setup
+ _LOCAL_RANK = torch_env.local_rank
+ _LOCAL_WORLD_SIZE = torch_env.local_world_size
+ _restrict_print_to_main_process()
diff --git a/dinov2/dinov2/eval/__init__.py b/dinov2/dinov2/eval/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..0952fcc3f57e34b3747962e9ebd6fc57aeea63fa
--- /dev/null
+++ b/dinov2/dinov2/eval/__init__.py
@@ -0,0 +1,5 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/dinov2/dinov2/eval/knn.py b/dinov2/dinov2/eval/knn.py
new file mode 100644
index 0000000000000000000000000000000000000000..018ad5b29989ddb2b128c0dfc2e7f586914883ec
--- /dev/null
+++ b/dinov2/dinov2/eval/knn.py
@@ -0,0 +1,404 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+from functools import partial
+import json
+import logging
+import os
+import sys
+from typing import List, Optional
+
+import torch
+from torch.nn.functional import one_hot, softmax
+
+import dinov2.distributed as distributed
+from dinov2.data import SamplerType, make_data_loader, make_dataset
+from dinov2.data.transforms import make_classification_eval_transform
+from dinov2.eval.metrics import AccuracyAveraging, build_topk_accuracy_metric
+from dinov2.eval.setup import get_args_parser as get_setup_args_parser
+from dinov2.eval.setup import setup_and_build_model
+from dinov2.eval.utils import ModelWithNormalize, evaluate, extract_features
+
+
+logger = logging.getLogger("dinov2")
+
+
+def get_args_parser(
+ description: Optional[str] = None,
+ parents: Optional[List[argparse.ArgumentParser]] = [],
+ add_help: bool = True,
+):
+ setup_args_parser = get_setup_args_parser(parents=parents, add_help=False)
+ parents = [setup_args_parser]
+ parser = argparse.ArgumentParser(
+ description=description,
+ parents=parents,
+ add_help=add_help,
+ )
+ parser.add_argument(
+ "--train-dataset",
+ dest="train_dataset_str",
+ type=str,
+ help="Training dataset",
+ )
+ parser.add_argument(
+ "--val-dataset",
+ dest="val_dataset_str",
+ type=str,
+ help="Validation dataset",
+ )
+ parser.add_argument(
+ "--nb_knn",
+ nargs="+",
+ type=int,
+ help="Number of NN to use. 20 is usually working the best.",
+ )
+ parser.add_argument(
+ "--temperature",
+ type=float,
+ help="Temperature used in the voting coefficient",
+ )
+ parser.add_argument(
+ "--gather-on-cpu",
+ action="store_true",
+ help="Whether to gather the train features on cpu, slower"
+ "but useful to avoid OOM for large datasets (e.g. ImageNet22k).",
+ )
+ parser.add_argument(
+ "--batch-size",
+ type=int,
+ help="Batch size.",
+ )
+ parser.add_argument(
+ "--n-per-class-list",
+ nargs="+",
+ type=int,
+ help="Number to take per class",
+ )
+ parser.add_argument(
+ "--n-tries",
+ type=int,
+ help="Number of tries",
+ )
+ parser.set_defaults(
+ train_dataset_str="ImageNet:split=TRAIN",
+ val_dataset_str="ImageNet:split=VAL",
+ nb_knn=[10, 20, 100, 200],
+ temperature=0.07,
+ batch_size=256,
+ n_per_class_list=[-1],
+ n_tries=1,
+ )
+ return parser
+
+
+class KnnModule(torch.nn.Module):
+ """
+ Gets knn of test features from all processes on a chunk of the train features
+
+ Each rank gets a chunk of the train features as well as a chunk of the test features.
+ In `compute_neighbors`, for each rank one after the other, its chunk of test features
+ is sent to all devices, partial knns are computed with each chunk of train features
+ then collated back on the original device.
+ """
+
+ def __init__(self, train_features, train_labels, nb_knn, T, device, num_classes=1000):
+ super().__init__()
+
+ self.global_rank = distributed.get_global_rank()
+ self.global_size = distributed.get_global_size()
+
+ self.device = device
+ self.train_features_rank_T = train_features.chunk(self.global_size)[self.global_rank].T.to(self.device)
+ self.candidates = train_labels.chunk(self.global_size)[self.global_rank].view(1, -1).to(self.device)
+
+ self.nb_knn = nb_knn
+ self.max_k = max(self.nb_knn)
+ self.T = T
+ self.num_classes = num_classes
+
+ def _get_knn_sims_and_labels(self, similarity, train_labels):
+ topk_sims, indices = similarity.topk(self.max_k, largest=True, sorted=True)
+ neighbors_labels = torch.gather(train_labels, 1, indices)
+ return topk_sims, neighbors_labels
+
+ def _similarity_for_rank(self, features_rank, source_rank):
+ # Send the features from `source_rank` to all ranks
+ broadcast_shape = torch.tensor(features_rank.shape).to(self.device)
+ torch.distributed.broadcast(broadcast_shape, source_rank)
+
+ broadcasted = features_rank
+ if self.global_rank != source_rank:
+ broadcasted = torch.zeros(*broadcast_shape, dtype=features_rank.dtype, device=self.device)
+ torch.distributed.broadcast(broadcasted, source_rank)
+
+ # Compute the neighbors for `source_rank` among `train_features_rank_T`
+ similarity_rank = torch.mm(broadcasted, self.train_features_rank_T)
+ candidate_labels = self.candidates.expand(len(similarity_rank), -1)
+ return self._get_knn_sims_and_labels(similarity_rank, candidate_labels)
+
+ def _gather_all_knn_for_rank(self, topk_sims, neighbors_labels, target_rank):
+ # Gather all neighbors for `target_rank`
+ topk_sims_rank = retrieved_rank = None
+ if self.global_rank == target_rank:
+ topk_sims_rank = [torch.zeros_like(topk_sims) for _ in range(self.global_size)]
+ retrieved_rank = [torch.zeros_like(neighbors_labels) for _ in range(self.global_size)]
+
+ torch.distributed.gather(topk_sims, topk_sims_rank, dst=target_rank)
+ torch.distributed.gather(neighbors_labels, retrieved_rank, dst=target_rank)
+
+ if self.global_rank == target_rank:
+ # Perform a second top-k on the k * global_size retrieved neighbors
+ topk_sims_rank = torch.cat(topk_sims_rank, dim=1)
+ retrieved_rank = torch.cat(retrieved_rank, dim=1)
+ results = self._get_knn_sims_and_labels(topk_sims_rank, retrieved_rank)
+ return results
+ return None
+
+ def compute_neighbors(self, features_rank):
+ for rank in range(self.global_size):
+ topk_sims, neighbors_labels = self._similarity_for_rank(features_rank, rank)
+ results = self._gather_all_knn_for_rank(topk_sims, neighbors_labels, rank)
+ if results is not None:
+ topk_sims_rank, neighbors_labels_rank = results
+ return topk_sims_rank, neighbors_labels_rank
+
+ def forward(self, features_rank):
+ """
+ Compute the results on all values of `self.nb_knn` neighbors from the full `self.max_k`
+ """
+ assert all(k <= self.max_k for k in self.nb_knn)
+
+ topk_sims, neighbors_labels = self.compute_neighbors(features_rank)
+ batch_size = neighbors_labels.shape[0]
+ topk_sims_transform = softmax(topk_sims / self.T, 1)
+ matmul = torch.mul(
+ one_hot(neighbors_labels, num_classes=self.num_classes),
+ topk_sims_transform.view(batch_size, -1, 1),
+ )
+ probas_for_k = {k: torch.sum(matmul[:, :k, :], 1) for k in self.nb_knn}
+ return probas_for_k
+
+
+class DictKeysModule(torch.nn.Module):
+ def __init__(self, keys):
+ super().__init__()
+ self.keys = keys
+
+ def forward(self, features_dict, targets):
+ for k in self.keys:
+ features_dict = features_dict[k]
+ return {"preds": features_dict, "target": targets}
+
+
+def create_module_dict(*, module, n_per_class_list, n_tries, nb_knn, train_features, train_labels):
+ modules = {}
+ mapping = create_class_indices_mapping(train_labels)
+ for npc in n_per_class_list:
+ if npc < 0: # Only one try needed when using the full data
+ full_module = module(
+ train_features=train_features,
+ train_labels=train_labels,
+ nb_knn=nb_knn,
+ )
+ modules["full"] = ModuleDictWithForward({"1": full_module})
+ continue
+ all_tries = {}
+ for t in range(n_tries):
+ final_indices = filter_train(mapping, npc, seed=t)
+ k_list = list(set(nb_knn + [npc]))
+ k_list = sorted([el for el in k_list if el <= npc])
+ all_tries[str(t)] = module(
+ train_features=train_features[final_indices],
+ train_labels=train_labels[final_indices],
+ nb_knn=k_list,
+ )
+ modules[f"{npc} per class"] = ModuleDictWithForward(all_tries)
+
+ return ModuleDictWithForward(modules)
+
+
+def filter_train(mapping, n_per_class, seed):
+ torch.manual_seed(seed)
+ final_indices = []
+ for k in mapping.keys():
+ index = torch.randperm(len(mapping[k]))[:n_per_class]
+ final_indices.append(mapping[k][index])
+ return torch.cat(final_indices).squeeze()
+
+
+def create_class_indices_mapping(labels):
+ unique_labels, inverse = torch.unique(labels, return_inverse=True)
+ mapping = {unique_labels[i]: (inverse == i).nonzero() for i in range(len(unique_labels))}
+ return mapping
+
+
+class ModuleDictWithForward(torch.nn.ModuleDict):
+ def forward(self, *args, **kwargs):
+ return {k: module(*args, **kwargs) for k, module in self._modules.items()}
+
+
+def eval_knn(
+ model,
+ train_dataset,
+ val_dataset,
+ accuracy_averaging,
+ nb_knn,
+ temperature,
+ batch_size,
+ num_workers,
+ gather_on_cpu,
+ n_per_class_list=[-1],
+ n_tries=1,
+):
+ model = ModelWithNormalize(model)
+
+ logger.info("Extracting features for train set...")
+ train_features, train_labels = extract_features(
+ model, train_dataset, batch_size, num_workers, gather_on_cpu=gather_on_cpu
+ )
+ logger.info(f"Train features created, shape {train_features.shape}.")
+
+ val_dataloader = make_data_loader(
+ dataset=val_dataset,
+ batch_size=batch_size,
+ num_workers=num_workers,
+ sampler_type=SamplerType.DISTRIBUTED,
+ drop_last=False,
+ shuffle=False,
+ persistent_workers=True,
+ )
+ num_classes = train_labels.max() + 1
+ metric_collection = build_topk_accuracy_metric(accuracy_averaging, num_classes=num_classes)
+
+ device = torch.cuda.current_device()
+ partial_module = partial(KnnModule, T=temperature, device=device, num_classes=num_classes)
+ knn_module_dict = create_module_dict(
+ module=partial_module,
+ n_per_class_list=n_per_class_list,
+ n_tries=n_tries,
+ nb_knn=nb_knn,
+ train_features=train_features,
+ train_labels=train_labels,
+ )
+ postprocessors, metrics = {}, {}
+ for n_per_class, knn_module in knn_module_dict.items():
+ for t, knn_try in knn_module.items():
+ postprocessors = {
+ **postprocessors,
+ **{(n_per_class, t, k): DictKeysModule([n_per_class, t, k]) for k in knn_try.nb_knn},
+ }
+ metrics = {**metrics, **{(n_per_class, t, k): metric_collection.clone() for k in knn_try.nb_knn}}
+ model_with_knn = torch.nn.Sequential(model, knn_module_dict)
+
+ # ============ evaluation ... ============
+ logger.info("Start the k-NN classification.")
+ _, results_dict = evaluate(model_with_knn, val_dataloader, postprocessors, metrics, device)
+
+ # Averaging the results over the n tries for each value of n_per_class
+ for n_per_class, knn_module in knn_module_dict.items():
+ first_try = list(knn_module.keys())[0]
+ k_list = knn_module[first_try].nb_knn
+ for k in k_list:
+ keys = results_dict[(n_per_class, first_try, k)].keys() # keys are e.g. `top-1` and `top-5`
+ results_dict[(n_per_class, k)] = {
+ key: torch.mean(torch.stack([results_dict[(n_per_class, t, k)][key] for t in knn_module.keys()]))
+ for key in keys
+ }
+ for t in knn_module.keys():
+ del results_dict[(n_per_class, t, k)]
+
+ return results_dict
+
+
+def eval_knn_with_model(
+ model,
+ output_dir,
+ train_dataset_str="ImageNet:split=TRAIN",
+ val_dataset_str="ImageNet:split=VAL",
+ nb_knn=(10, 20, 100, 200),
+ temperature=0.07,
+ autocast_dtype=torch.float,
+ accuracy_averaging=AccuracyAveraging.MEAN_ACCURACY,
+ transform=None,
+ gather_on_cpu=False,
+ batch_size=256,
+ num_workers=5,
+ n_per_class_list=[-1],
+ n_tries=1,
+):
+ transform = transform or make_classification_eval_transform()
+
+ train_dataset = make_dataset(
+ dataset_str=train_dataset_str,
+ transform=transform,
+ )
+ val_dataset = make_dataset(
+ dataset_str=val_dataset_str,
+ transform=transform,
+ )
+
+ with torch.cuda.amp.autocast(dtype=autocast_dtype):
+ results_dict_knn = eval_knn(
+ model=model,
+ train_dataset=train_dataset,
+ val_dataset=val_dataset,
+ accuracy_averaging=accuracy_averaging,
+ nb_knn=nb_knn,
+ temperature=temperature,
+ batch_size=batch_size,
+ num_workers=num_workers,
+ gather_on_cpu=gather_on_cpu,
+ n_per_class_list=n_per_class_list,
+ n_tries=n_tries,
+ )
+
+ results_dict = {}
+ if distributed.is_main_process():
+ for knn_ in results_dict_knn.keys():
+ top1 = results_dict_knn[knn_]["top-1"].item() * 100.0
+ top5 = results_dict_knn[knn_]["top-5"].item() * 100.0
+ results_dict[f"{knn_} Top 1"] = top1
+ results_dict[f"{knn_} Top 5"] = top5
+ logger.info(f"{knn_} classifier result: Top1: {top1:.2f} Top5: {top5:.2f}")
+
+ metrics_file_path = os.path.join(output_dir, "results_eval_knn.json")
+ with open(metrics_file_path, "a") as f:
+ for k, v in results_dict.items():
+ f.write(json.dumps({k: v}) + "\n")
+
+ if distributed.is_enabled():
+ torch.distributed.barrier()
+ return results_dict
+
+
+def main(args):
+ model, autocast_dtype = setup_and_build_model(args)
+ eval_knn_with_model(
+ model=model,
+ output_dir=args.output_dir,
+ train_dataset_str=args.train_dataset_str,
+ val_dataset_str=args.val_dataset_str,
+ nb_knn=args.nb_knn,
+ temperature=args.temperature,
+ autocast_dtype=autocast_dtype,
+ accuracy_averaging=AccuracyAveraging.MEAN_ACCURACY,
+ transform=None,
+ gather_on_cpu=args.gather_on_cpu,
+ batch_size=args.batch_size,
+ num_workers=5,
+ n_per_class_list=args.n_per_class_list,
+ n_tries=args.n_tries,
+ )
+ return 0
+
+
+if __name__ == "__main__":
+ description = "DINOv2 k-NN evaluation"
+ args_parser = get_args_parser(description=description)
+ args = args_parser.parse_args()
+ sys.exit(main(args))
diff --git a/dinov2/dinov2/eval/linear.py b/dinov2/dinov2/eval/linear.py
new file mode 100644
index 0000000000000000000000000000000000000000..e472a2421d237fd3e6dc8bdc44becb3cbfd86b47
--- /dev/null
+++ b/dinov2/dinov2/eval/linear.py
@@ -0,0 +1,625 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+from functools import partial
+import json
+import logging
+import os
+import sys
+from typing import List, Optional
+
+import numpy as np
+import torch
+import torch.nn as nn
+from torch.nn.parallel import DistributedDataParallel
+from fvcore.common.checkpoint import Checkpointer, PeriodicCheckpointer
+
+from dinov2.data import SamplerType, make_data_loader, make_dataset
+from dinov2.data.transforms import make_classification_eval_transform, make_classification_train_transform
+import dinov2.distributed as distributed
+from dinov2.eval.metrics import MetricType, build_metric
+from dinov2.eval.setup import get_args_parser as get_setup_args_parser
+from dinov2.eval.setup import setup_and_build_model
+from dinov2.eval.utils import ModelWithIntermediateLayers, evaluate
+from dinov2.logging import MetricLogger
+
+
+logger = logging.getLogger("dinov2")
+
+
+def get_args_parser(
+ description: Optional[str] = None,
+ parents: Optional[List[argparse.ArgumentParser]] = [],
+ add_help: bool = True,
+):
+ setup_args_parser = get_setup_args_parser(parents=parents, add_help=False)
+ parents = [setup_args_parser]
+ parser = argparse.ArgumentParser(
+ description=description,
+ parents=parents,
+ add_help=add_help,
+ )
+ parser.add_argument(
+ "--train-dataset",
+ dest="train_dataset_str",
+ type=str,
+ help="Training dataset",
+ )
+ parser.add_argument(
+ "--val-dataset",
+ dest="val_dataset_str",
+ type=str,
+ help="Validation dataset",
+ )
+ parser.add_argument(
+ "--test-datasets",
+ dest="test_dataset_strs",
+ type=str,
+ nargs="+",
+ help="Test datasets, none to reuse the validation dataset",
+ )
+ parser.add_argument(
+ "--epochs",
+ type=int,
+ help="Number of training epochs",
+ )
+ parser.add_argument(
+ "--batch-size",
+ type=int,
+ help="Batch Size (per GPU)",
+ )
+ parser.add_argument(
+ "--num-workers",
+ type=int,
+ help="Number de Workers",
+ )
+ parser.add_argument(
+ "--epoch-length",
+ type=int,
+ help="Length of an epoch in number of iterations",
+ )
+ parser.add_argument(
+ "--save-checkpoint-frequency",
+ type=int,
+ help="Number of epochs between two named checkpoint saves.",
+ )
+ parser.add_argument(
+ "--eval-period-iterations",
+ type=int,
+ help="Number of iterations between two evaluations.",
+ )
+ parser.add_argument(
+ "--learning-rates",
+ nargs="+",
+ type=float,
+ help="Learning rates to grid search.",
+ )
+ parser.add_argument(
+ "--no-resume",
+ action="store_true",
+ help="Whether to not resume from existing checkpoints",
+ )
+ parser.add_argument(
+ "--val-metric-type",
+ type=MetricType,
+ choices=list(MetricType),
+ help="Validation metric",
+ )
+ parser.add_argument(
+ "--test-metric-types",
+ type=MetricType,
+ choices=list(MetricType),
+ nargs="+",
+ help="Evaluation metric",
+ )
+ parser.add_argument(
+ "--classifier-fpath",
+ type=str,
+ help="Path to a file containing pretrained linear classifiers",
+ )
+ parser.add_argument(
+ "--val-class-mapping-fpath",
+ type=str,
+ help="Path to a file containing a mapping to adjust classifier outputs",
+ )
+ parser.add_argument(
+ "--test-class-mapping-fpaths",
+ nargs="+",
+ type=str,
+ help="Path to a file containing a mapping to adjust classifier outputs",
+ )
+ parser.set_defaults(
+ train_dataset_str="ImageNet:split=TRAIN",
+ val_dataset_str="ImageNet:split=VAL",
+ test_dataset_strs=None,
+ epochs=10,
+ batch_size=128,
+ num_workers=8,
+ epoch_length=1250,
+ save_checkpoint_frequency=20,
+ eval_period_iterations=1250,
+ learning_rates=[1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2, 0.1],
+ val_metric_type=MetricType.MEAN_ACCURACY,
+ test_metric_types=None,
+ classifier_fpath=None,
+ val_class_mapping_fpath=None,
+ test_class_mapping_fpaths=[None],
+ )
+ return parser
+
+
+def has_ddp_wrapper(m: nn.Module) -> bool:
+ return isinstance(m, DistributedDataParallel)
+
+
+def remove_ddp_wrapper(m: nn.Module) -> nn.Module:
+ return m.module if has_ddp_wrapper(m) else m
+
+
+def _pad_and_collate(batch):
+ maxlen = max(len(targets) for image, targets in batch)
+ padded_batch = [
+ (image, np.pad(targets, (0, maxlen - len(targets)), constant_values=-1)) for image, targets in batch
+ ]
+ return torch.utils.data.default_collate(padded_batch)
+
+
+def create_linear_input(x_tokens_list, use_n_blocks, use_avgpool):
+ intermediate_output = x_tokens_list[-use_n_blocks:]
+ output = torch.cat([class_token for _, class_token in intermediate_output], dim=-1)
+ if use_avgpool:
+ output = torch.cat(
+ (
+ output,
+ torch.mean(intermediate_output[-1][0], dim=1), # patch tokens
+ ),
+ dim=-1,
+ )
+ output = output.reshape(output.shape[0], -1)
+ return output.float()
+
+
+class LinearClassifier(nn.Module):
+ """Linear layer to train on top of frozen features"""
+
+ def __init__(self, out_dim, use_n_blocks, use_avgpool, num_classes=1000):
+ super().__init__()
+ self.out_dim = out_dim
+ self.use_n_blocks = use_n_blocks
+ self.use_avgpool = use_avgpool
+ self.num_classes = num_classes
+ self.linear = nn.Linear(out_dim, num_classes)
+ self.linear.weight.data.normal_(mean=0.0, std=0.01)
+ self.linear.bias.data.zero_()
+
+ def forward(self, x_tokens_list):
+ output = create_linear_input(x_tokens_list, self.use_n_blocks, self.use_avgpool)
+ return self.linear(output)
+
+
+class AllClassifiers(nn.Module):
+ def __init__(self, classifiers_dict):
+ super().__init__()
+ self.classifiers_dict = nn.ModuleDict()
+ self.classifiers_dict.update(classifiers_dict)
+
+ def forward(self, inputs):
+ return {k: v.forward(inputs) for k, v in self.classifiers_dict.items()}
+
+ def __len__(self):
+ return len(self.classifiers_dict)
+
+
+class LinearPostprocessor(nn.Module):
+ def __init__(self, linear_classifier, class_mapping=None):
+ super().__init__()
+ self.linear_classifier = linear_classifier
+ self.register_buffer("class_mapping", None if class_mapping is None else torch.LongTensor(class_mapping))
+
+ def forward(self, samples, targets):
+ preds = self.linear_classifier(samples)
+ return {
+ "preds": preds[:, self.class_mapping] if self.class_mapping is not None else preds,
+ "target": targets,
+ }
+
+
+def scale_lr(learning_rates, batch_size):
+ return learning_rates * (batch_size * distributed.get_global_size()) / 256.0
+
+
+def setup_linear_classifiers(sample_output, n_last_blocks_list, learning_rates, batch_size, num_classes=1000):
+ linear_classifiers_dict = nn.ModuleDict()
+ optim_param_groups = []
+ for n in n_last_blocks_list:
+ for avgpool in [False, True]:
+ for _lr in learning_rates:
+ lr = scale_lr(_lr, batch_size)
+ out_dim = create_linear_input(sample_output, use_n_blocks=n, use_avgpool=avgpool).shape[1]
+ linear_classifier = LinearClassifier(
+ out_dim, use_n_blocks=n, use_avgpool=avgpool, num_classes=num_classes
+ )
+ linear_classifier = linear_classifier.cuda()
+ linear_classifiers_dict[
+ f"classifier_{n}_blocks_avgpool_{avgpool}_lr_{lr:.5f}".replace(".", "_")
+ ] = linear_classifier
+ optim_param_groups.append({"params": linear_classifier.parameters(), "lr": lr})
+
+ linear_classifiers = AllClassifiers(linear_classifiers_dict)
+ if distributed.is_enabled():
+ linear_classifiers = nn.parallel.DistributedDataParallel(linear_classifiers)
+
+ return linear_classifiers, optim_param_groups
+
+
+@torch.no_grad()
+def evaluate_linear_classifiers(
+ feature_model,
+ linear_classifiers,
+ data_loader,
+ metric_type,
+ metrics_file_path,
+ training_num_classes,
+ iteration,
+ prefixstring="",
+ class_mapping=None,
+ best_classifier_on_val=None,
+):
+ logger.info("running validation !")
+
+ num_classes = len(class_mapping) if class_mapping is not None else training_num_classes
+ metric = build_metric(metric_type, num_classes=num_classes)
+ postprocessors = {k: LinearPostprocessor(v, class_mapping) for k, v in linear_classifiers.classifiers_dict.items()}
+ metrics = {k: metric.clone() for k in linear_classifiers.classifiers_dict}
+
+ _, results_dict_temp = evaluate(
+ feature_model,
+ data_loader,
+ postprocessors,
+ metrics,
+ torch.cuda.current_device(),
+ )
+
+ logger.info("")
+ results_dict = {}
+ max_accuracy = 0
+ best_classifier = ""
+ for i, (classifier_string, metric) in enumerate(results_dict_temp.items()):
+ logger.info(f"{prefixstring} -- Classifier: {classifier_string} * {metric}")
+ if (
+ best_classifier_on_val is None and metric["top-1"].item() > max_accuracy
+ ) or classifier_string == best_classifier_on_val:
+ max_accuracy = metric["top-1"].item()
+ best_classifier = classifier_string
+
+ results_dict["best_classifier"] = {"name": best_classifier, "accuracy": max_accuracy}
+
+ logger.info(f"best classifier: {results_dict['best_classifier']}")
+
+ if distributed.is_main_process():
+ with open(metrics_file_path, "a") as f:
+ f.write(f"iter: {iteration}\n")
+ for k, v in results_dict.items():
+ f.write(json.dumps({k: v}) + "\n")
+ f.write("\n")
+
+ return results_dict
+
+
+def eval_linear(
+ *,
+ feature_model,
+ linear_classifiers,
+ train_data_loader,
+ val_data_loader,
+ metrics_file_path,
+ optimizer,
+ scheduler,
+ output_dir,
+ max_iter,
+ checkpoint_period, # In number of iter, creates a new file every period
+ running_checkpoint_period, # Period to update main checkpoint file
+ eval_period,
+ metric_type,
+ training_num_classes,
+ resume=True,
+ classifier_fpath=None,
+ val_class_mapping=None,
+):
+ checkpointer = Checkpointer(linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler)
+ start_iter = checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get("iteration", -1) + 1
+
+ periodic_checkpointer = PeriodicCheckpointer(checkpointer, checkpoint_period, max_iter=max_iter)
+ iteration = start_iter
+ logger.info("Starting training from iteration {}".format(start_iter))
+ metric_logger = MetricLogger(delimiter=" ")
+ header = "Training"
+
+ for data, labels in metric_logger.log_every(
+ train_data_loader,
+ 10,
+ header,
+ max_iter,
+ start_iter,
+ ):
+ data = data.cuda(non_blocking=True)
+ labels = labels.cuda(non_blocking=True)
+
+ features = feature_model(data)
+ outputs = linear_classifiers(features)
+
+ losses = {f"loss_{k}": nn.CrossEntropyLoss()(v, labels) for k, v in outputs.items()}
+ loss = sum(losses.values())
+
+ # compute the gradients
+ optimizer.zero_grad()
+ loss.backward()
+
+ # step
+ optimizer.step()
+ scheduler.step()
+
+ # log
+ if iteration % 10 == 0:
+ torch.cuda.synchronize()
+ metric_logger.update(loss=loss.item())
+ metric_logger.update(lr=optimizer.param_groups[0]["lr"])
+ print("lr", optimizer.param_groups[0]["lr"])
+
+ if iteration - start_iter > 5:
+ if iteration % running_checkpoint_period == 0:
+ torch.cuda.synchronize()
+ if distributed.is_main_process():
+ logger.info("Checkpointing running_checkpoint")
+ periodic_checkpointer.save("running_checkpoint_linear_eval", iteration=iteration)
+ torch.cuda.synchronize()
+ periodic_checkpointer.step(iteration)
+
+ if eval_period > 0 and (iteration + 1) % eval_period == 0 and iteration != max_iter - 1:
+ _ = evaluate_linear_classifiers(
+ feature_model=feature_model,
+ linear_classifiers=remove_ddp_wrapper(linear_classifiers),
+ data_loader=val_data_loader,
+ metrics_file_path=metrics_file_path,
+ prefixstring=f"ITER: {iteration}",
+ metric_type=metric_type,
+ training_num_classes=training_num_classes,
+ iteration=iteration,
+ class_mapping=val_class_mapping,
+ )
+ torch.cuda.synchronize()
+
+ iteration = iteration + 1
+
+ val_results_dict = evaluate_linear_classifiers(
+ feature_model=feature_model,
+ linear_classifiers=remove_ddp_wrapper(linear_classifiers),
+ data_loader=val_data_loader,
+ metrics_file_path=metrics_file_path,
+ metric_type=metric_type,
+ training_num_classes=training_num_classes,
+ iteration=iteration,
+ class_mapping=val_class_mapping,
+ )
+ return val_results_dict, feature_model, linear_classifiers, iteration
+
+
+def make_eval_data_loader(test_dataset_str, batch_size, num_workers, metric_type):
+ test_dataset = make_dataset(
+ dataset_str=test_dataset_str,
+ transform=make_classification_eval_transform(),
+ )
+ test_data_loader = make_data_loader(
+ dataset=test_dataset,
+ batch_size=batch_size,
+ num_workers=num_workers,
+ sampler_type=SamplerType.DISTRIBUTED,
+ drop_last=False,
+ shuffle=False,
+ persistent_workers=False,
+ collate_fn=_pad_and_collate if metric_type == MetricType.IMAGENET_REAL_ACCURACY else None,
+ )
+ return test_data_loader
+
+
+def test_on_datasets(
+ feature_model,
+ linear_classifiers,
+ test_dataset_strs,
+ batch_size,
+ num_workers,
+ test_metric_types,
+ metrics_file_path,
+ training_num_classes,
+ iteration,
+ best_classifier_on_val,
+ prefixstring="",
+ test_class_mappings=[None],
+):
+ results_dict = {}
+ for test_dataset_str, class_mapping, metric_type in zip(test_dataset_strs, test_class_mappings, test_metric_types):
+ logger.info(f"Testing on {test_dataset_str}")
+ test_data_loader = make_eval_data_loader(test_dataset_str, batch_size, num_workers, metric_type)
+ dataset_results_dict = evaluate_linear_classifiers(
+ feature_model,
+ remove_ddp_wrapper(linear_classifiers),
+ test_data_loader,
+ metric_type,
+ metrics_file_path,
+ training_num_classes,
+ iteration,
+ prefixstring="",
+ class_mapping=class_mapping,
+ best_classifier_on_val=best_classifier_on_val,
+ )
+ results_dict[f"{test_dataset_str}_accuracy"] = 100.0 * dataset_results_dict["best_classifier"]["accuracy"]
+ return results_dict
+
+
+def run_eval_linear(
+ model,
+ output_dir,
+ train_dataset_str,
+ val_dataset_str,
+ batch_size,
+ epochs,
+ epoch_length,
+ num_workers,
+ save_checkpoint_frequency,
+ eval_period_iterations,
+ learning_rates,
+ autocast_dtype,
+ test_dataset_strs=None,
+ resume=True,
+ classifier_fpath=None,
+ val_class_mapping_fpath=None,
+ test_class_mapping_fpaths=[None],
+ val_metric_type=MetricType.MEAN_ACCURACY,
+ test_metric_types=None,
+):
+ seed = 0
+
+ if test_dataset_strs is None:
+ test_dataset_strs = [val_dataset_str]
+ if test_metric_types is None:
+ test_metric_types = [val_metric_type] * len(test_dataset_strs)
+ else:
+ assert len(test_metric_types) == len(test_dataset_strs)
+ assert len(test_dataset_strs) == len(test_class_mapping_fpaths)
+
+ train_transform = make_classification_train_transform()
+ train_dataset = make_dataset(
+ dataset_str=train_dataset_str,
+ transform=train_transform,
+ )
+ training_num_classes = len(torch.unique(torch.Tensor(train_dataset.get_targets().astype(int))))
+ sampler_type = SamplerType.SHARDED_INFINITE
+ # sampler_type = SamplerType.INFINITE
+
+ n_last_blocks_list = [1, 4]
+ n_last_blocks = max(n_last_blocks_list)
+ autocast_ctx = partial(torch.cuda.amp.autocast, enabled=True, dtype=autocast_dtype)
+ feature_model = ModelWithIntermediateLayers(model, n_last_blocks, autocast_ctx)
+ sample_output = feature_model(train_dataset[0][0].unsqueeze(0).cuda())
+
+ linear_classifiers, optim_param_groups = setup_linear_classifiers(
+ sample_output,
+ n_last_blocks_list,
+ learning_rates,
+ batch_size,
+ training_num_classes,
+ )
+
+ optimizer = torch.optim.SGD(optim_param_groups, momentum=0.9, weight_decay=0)
+ max_iter = epochs * epoch_length
+ scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, max_iter, eta_min=0)
+ checkpointer = Checkpointer(linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler)
+ start_iter = checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get("iteration", -1) + 1
+ train_data_loader = make_data_loader(
+ dataset=train_dataset,
+ batch_size=batch_size,
+ num_workers=num_workers,
+ shuffle=True,
+ seed=seed,
+ sampler_type=sampler_type,
+ sampler_advance=start_iter,
+ drop_last=True,
+ persistent_workers=True,
+ )
+ val_data_loader = make_eval_data_loader(val_dataset_str, batch_size, num_workers, val_metric_type)
+
+ checkpoint_period = save_checkpoint_frequency * epoch_length
+
+ if val_class_mapping_fpath is not None:
+ logger.info(f"Using class mapping from {val_class_mapping_fpath}")
+ val_class_mapping = np.load(val_class_mapping_fpath)
+ else:
+ val_class_mapping = None
+
+ test_class_mappings = []
+ for class_mapping_fpath in test_class_mapping_fpaths:
+ if class_mapping_fpath is not None and class_mapping_fpath != "None":
+ logger.info(f"Using class mapping from {class_mapping_fpath}")
+ class_mapping = np.load(class_mapping_fpath)
+ else:
+ class_mapping = None
+ test_class_mappings.append(class_mapping)
+
+ metrics_file_path = os.path.join(output_dir, "results_eval_linear.json")
+ val_results_dict, feature_model, linear_classifiers, iteration = eval_linear(
+ feature_model=feature_model,
+ linear_classifiers=linear_classifiers,
+ train_data_loader=train_data_loader,
+ val_data_loader=val_data_loader,
+ metrics_file_path=metrics_file_path,
+ optimizer=optimizer,
+ scheduler=scheduler,
+ output_dir=output_dir,
+ max_iter=max_iter,
+ checkpoint_period=checkpoint_period,
+ running_checkpoint_period=epoch_length,
+ eval_period=eval_period_iterations,
+ metric_type=val_metric_type,
+ training_num_classes=training_num_classes,
+ resume=resume,
+ val_class_mapping=val_class_mapping,
+ classifier_fpath=classifier_fpath,
+ )
+ results_dict = {}
+ if len(test_dataset_strs) > 1 or test_dataset_strs[0] != val_dataset_str:
+ results_dict = test_on_datasets(
+ feature_model,
+ linear_classifiers,
+ test_dataset_strs,
+ batch_size,
+ 0, # num_workers,
+ test_metric_types,
+ metrics_file_path,
+ training_num_classes,
+ iteration,
+ val_results_dict["best_classifier"]["name"],
+ prefixstring="",
+ test_class_mappings=test_class_mappings,
+ )
+ results_dict["best_classifier"] = val_results_dict["best_classifier"]["name"]
+ results_dict[f"{val_dataset_str}_accuracy"] = 100.0 * val_results_dict["best_classifier"]["accuracy"]
+ logger.info("Test Results Dict " + str(results_dict))
+
+ return results_dict
+
+
+def main(args):
+ model, autocast_dtype = setup_and_build_model(args)
+ run_eval_linear(
+ model=model,
+ output_dir=args.output_dir,
+ train_dataset_str=args.train_dataset_str,
+ val_dataset_str=args.val_dataset_str,
+ test_dataset_strs=args.test_dataset_strs,
+ batch_size=args.batch_size,
+ epochs=args.epochs,
+ epoch_length=args.epoch_length,
+ num_workers=args.num_workers,
+ save_checkpoint_frequency=args.save_checkpoint_frequency,
+ eval_period_iterations=args.eval_period_iterations,
+ learning_rates=args.learning_rates,
+ autocast_dtype=autocast_dtype,
+ resume=not args.no_resume,
+ classifier_fpath=args.classifier_fpath,
+ val_metric_type=args.val_metric_type,
+ test_metric_types=args.test_metric_types,
+ val_class_mapping_fpath=args.val_class_mapping_fpath,
+ test_class_mapping_fpaths=args.test_class_mapping_fpaths,
+ )
+ return 0
+
+
+if __name__ == "__main__":
+ description = "DINOv2 linear evaluation"
+ args_parser = get_args_parser(description=description)
+ args = args_parser.parse_args()
+ sys.exit(main(args))
diff --git a/dinov2/dinov2/eval/log_regression.py b/dinov2/dinov2/eval/log_regression.py
new file mode 100644
index 0000000000000000000000000000000000000000..55f0ee7ef0ca3e83e61733519c4c8d1aedba0c4f
--- /dev/null
+++ b/dinov2/dinov2/eval/log_regression.py
@@ -0,0 +1,444 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import gc
+import logging
+import sys
+import time
+from typing import List, Optional
+
+from cuml.linear_model import LogisticRegression
+import torch
+import torch.backends.cudnn as cudnn
+import torch.distributed
+from torch import nn
+from torch.utils.data import TensorDataset
+from torchmetrics import MetricTracker
+
+from dinov2.data import make_dataset
+from dinov2.data.transforms import make_classification_eval_transform
+from dinov2.distributed import get_global_rank, get_global_size
+from dinov2.eval.metrics import MetricType, build_metric
+from dinov2.eval.setup import get_args_parser as get_setup_args_parser
+from dinov2.eval.setup import setup_and_build_model
+from dinov2.eval.utils import evaluate, extract_features
+from dinov2.utils.dtype import as_torch_dtype
+
+
+logger = logging.getLogger("dinov2")
+
+DEFAULT_MAX_ITER = 1_000
+C_POWER_RANGE = torch.linspace(-6, 5, 45)
+_CPU_DEVICE = torch.device("cpu")
+
+
+def get_args_parser(
+ description: Optional[str] = None,
+ parents: Optional[List[argparse.ArgumentParser]] = [],
+ add_help: bool = True,
+):
+ setup_args_parser = get_setup_args_parser(parents=parents, add_help=False)
+ parents = [setup_args_parser]
+ parser = argparse.ArgumentParser(
+ description=description,
+ parents=parents,
+ add_help=add_help,
+ )
+ parser.add_argument(
+ "--train-dataset",
+ dest="train_dataset_str",
+ type=str,
+ help="Training dataset",
+ )
+ parser.add_argument(
+ "--val-dataset",
+ dest="val_dataset_str",
+ type=str,
+ help="Validation dataset",
+ )
+ parser.add_argument(
+ "--finetune-dataset-str",
+ dest="finetune_dataset_str",
+ type=str,
+ help="Fine-tuning dataset",
+ )
+ parser.add_argument(
+ "--finetune-on-val",
+ action="store_true",
+ help="If there is no finetune dataset, whether to choose the "
+ "hyperparameters on the val set instead of 10%% of the train dataset",
+ )
+ parser.add_argument(
+ "--metric-type",
+ type=MetricType,
+ choices=list(MetricType),
+ help="Metric type",
+ )
+ parser.add_argument(
+ "--train-features-device",
+ type=str,
+ help="Device to gather train features (cpu, cuda, cuda:0, etc.), default: %(default)s",
+ )
+ parser.add_argument(
+ "--train-dtype",
+ type=str,
+ help="Data type to convert the train features to (default: %(default)s)",
+ )
+ parser.add_argument(
+ "--max-train-iters",
+ type=int,
+ help="Maximum number of train iterations (default: %(default)s)",
+ )
+ parser.set_defaults(
+ train_dataset_str="ImageNet:split=TRAIN",
+ val_dataset_str="ImageNet:split=VAL",
+ finetune_dataset_str=None,
+ metric_type=MetricType.MEAN_ACCURACY,
+ train_features_device="cpu",
+ train_dtype="float64",
+ max_train_iters=DEFAULT_MAX_ITER,
+ finetune_on_val=False,
+ )
+ return parser
+
+
+class LogRegModule(nn.Module):
+ def __init__(
+ self,
+ C,
+ max_iter=DEFAULT_MAX_ITER,
+ dtype=torch.float64,
+ device=_CPU_DEVICE,
+ ):
+ super().__init__()
+ self.dtype = dtype
+ self.device = device
+ self.estimator = LogisticRegression(
+ penalty="l2",
+ C=C,
+ max_iter=max_iter,
+ output_type="numpy",
+ tol=1e-12,
+ linesearch_max_iter=50,
+ )
+
+ def forward(self, samples, targets):
+ samples_device = samples.device
+ samples = samples.to(dtype=self.dtype, device=self.device)
+ if self.device == _CPU_DEVICE:
+ samples = samples.numpy()
+ probas = self.estimator.predict_proba(samples)
+ return {"preds": torch.from_numpy(probas).to(samples_device), "target": targets}
+
+ def fit(self, train_features, train_labels):
+ train_features = train_features.to(dtype=self.dtype, device=self.device)
+ train_labels = train_labels.to(dtype=self.dtype, device=self.device)
+ if self.device == _CPU_DEVICE:
+ # both cuML and sklearn only work with numpy arrays on CPU
+ train_features = train_features.numpy()
+ train_labels = train_labels.numpy()
+ self.estimator.fit(train_features, train_labels)
+
+
+def evaluate_model(*, logreg_model, logreg_metric, test_data_loader, device):
+ postprocessors = {"metrics": logreg_model}
+ metrics = {"metrics": logreg_metric}
+ return evaluate(nn.Identity(), test_data_loader, postprocessors, metrics, device)
+
+
+def train_for_C(*, C, max_iter, train_features, train_labels, dtype=torch.float64, device=_CPU_DEVICE):
+ logreg_model = LogRegModule(C, max_iter=max_iter, dtype=dtype, device=device)
+ logreg_model.fit(train_features, train_labels)
+ return logreg_model
+
+
+def train_and_evaluate(
+ *,
+ C,
+ max_iter,
+ train_features,
+ train_labels,
+ logreg_metric,
+ test_data_loader,
+ train_dtype=torch.float64,
+ train_features_device,
+ eval_device,
+):
+ logreg_model = train_for_C(
+ C=C,
+ max_iter=max_iter,
+ train_features=train_features,
+ train_labels=train_labels,
+ dtype=train_dtype,
+ device=train_features_device,
+ )
+ return evaluate_model(
+ logreg_model=logreg_model,
+ logreg_metric=logreg_metric,
+ test_data_loader=test_data_loader,
+ device=eval_device,
+ )
+
+
+def sweep_C_values(
+ *,
+ train_features,
+ train_labels,
+ test_data_loader,
+ metric_type,
+ num_classes,
+ train_dtype=torch.float64,
+ train_features_device=_CPU_DEVICE,
+ max_train_iters=DEFAULT_MAX_ITER,
+):
+ if metric_type == MetricType.PER_CLASS_ACCURACY:
+ # If we want to output per-class accuracy, we select the hyperparameters with mean per class
+ metric_type = MetricType.MEAN_PER_CLASS_ACCURACY
+ logreg_metric = build_metric(metric_type, num_classes=num_classes)
+ metric_tracker = MetricTracker(logreg_metric, maximize=True)
+ ALL_C = 10**C_POWER_RANGE
+ logreg_models = {}
+
+ train_features = train_features.to(dtype=train_dtype, device=train_features_device)
+ train_labels = train_labels.to(device=train_features_device)
+
+ for i in range(get_global_rank(), len(ALL_C), get_global_size()):
+ C = ALL_C[i].item()
+ logger.info(
+ f"Training for C = {C:.5f}, dtype={train_dtype}, "
+ f"features: {train_features.shape}, {train_features.dtype}, "
+ f"labels: {train_labels.shape}, {train_labels.dtype}"
+ )
+ logreg_models[C] = train_for_C(
+ C=C,
+ max_iter=max_train_iters,
+ train_features=train_features,
+ train_labels=train_labels,
+ dtype=train_dtype,
+ device=train_features_device,
+ )
+
+ gather_list = [None for _ in range(get_global_size())]
+ torch.distributed.all_gather_object(gather_list, logreg_models)
+
+ logreg_models_gathered = {}
+ for logreg_dict in gather_list:
+ logreg_models_gathered.update(logreg_dict)
+
+ for i in range(len(ALL_C)):
+ metric_tracker.increment()
+ C = ALL_C[i].item()
+ evals = evaluate_model(
+ logreg_model=logreg_models_gathered[C],
+ logreg_metric=metric_tracker,
+ test_data_loader=test_data_loader,
+ device=torch.cuda.current_device(),
+ )
+ logger.info(f"Trained for C = {C:.5f}, accuracies = {evals}")
+
+ best_stats, which_epoch = metric_tracker.best_metric(return_step=True)
+ best_stats_100 = {k: 100.0 * v for k, v in best_stats.items()}
+ if which_epoch["top-1"] == i:
+ best_C = C
+ logger.info(f"Sweep best {best_stats_100}, best C = {best_C:.6f}")
+
+ return best_stats, best_C
+
+
+def eval_log_regression(
+ *,
+ model,
+ train_dataset,
+ val_dataset,
+ finetune_dataset,
+ metric_type,
+ batch_size,
+ num_workers,
+ finetune_on_val=False,
+ train_dtype=torch.float64,
+ train_features_device=_CPU_DEVICE,
+ max_train_iters=DEFAULT_MAX_ITER,
+):
+ """
+ Implements the "standard" process for log regression evaluation:
+ The value of C is chosen by training on train_dataset and evaluating on
+ finetune_dataset. Then, the final model is trained on a concatenation of
+ train_dataset and finetune_dataset, and is evaluated on val_dataset.
+ If there is no finetune_dataset, the value of C is the one that yields
+ the best results on a random 10% subset of the train dataset
+ """
+
+ start = time.time()
+
+ train_features, train_labels = extract_features(
+ model, train_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
+ )
+ val_features, val_labels = extract_features(
+ model, val_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
+ )
+ val_data_loader = torch.utils.data.DataLoader(
+ TensorDataset(val_features, val_labels),
+ batch_size=batch_size,
+ drop_last=False,
+ num_workers=0,
+ persistent_workers=False,
+ )
+
+ if finetune_dataset is None and finetune_on_val:
+ logger.info("Choosing hyperparameters on the val dataset")
+ finetune_features, finetune_labels = val_features, val_labels
+ elif finetune_dataset is None and not finetune_on_val:
+ logger.info("Choosing hyperparameters on 10% of the train dataset")
+ torch.manual_seed(0)
+ indices = torch.randperm(len(train_features), device=train_features.device)
+ finetune_index = indices[: len(train_features) // 10]
+ train_index = indices[len(train_features) // 10 :]
+ finetune_features, finetune_labels = train_features[finetune_index], train_labels[finetune_index]
+ train_features, train_labels = train_features[train_index], train_labels[train_index]
+ else:
+ logger.info("Choosing hyperparameters on the finetune dataset")
+ finetune_features, finetune_labels = extract_features(
+ model, finetune_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
+ )
+ # release the model - free GPU memory
+ del model
+ gc.collect()
+ torch.cuda.empty_cache()
+ finetune_data_loader = torch.utils.data.DataLoader(
+ TensorDataset(finetune_features, finetune_labels),
+ batch_size=batch_size,
+ drop_last=False,
+ )
+
+ if len(train_labels.shape) > 1:
+ num_classes = train_labels.shape[1]
+ else:
+ num_classes = train_labels.max() + 1
+
+ logger.info("Using cuML for logistic regression")
+
+ best_stats, best_C = sweep_C_values(
+ train_features=train_features,
+ train_labels=train_labels,
+ test_data_loader=finetune_data_loader,
+ metric_type=metric_type,
+ num_classes=num_classes,
+ train_dtype=train_dtype,
+ train_features_device=train_features_device,
+ max_train_iters=max_train_iters,
+ )
+
+ if not finetune_on_val:
+ logger.info("Best parameter found, concatenating features")
+ train_features = torch.cat((train_features, finetune_features))
+ train_labels = torch.cat((train_labels, finetune_labels))
+
+ logger.info("Training final model")
+ logreg_metric = build_metric(metric_type, num_classes=num_classes)
+ evals = train_and_evaluate(
+ C=best_C,
+ max_iter=max_train_iters,
+ train_features=train_features,
+ train_labels=train_labels,
+ logreg_metric=logreg_metric.clone(),
+ test_data_loader=val_data_loader,
+ eval_device=torch.cuda.current_device(),
+ train_dtype=train_dtype,
+ train_features_device=train_features_device,
+ )
+
+ best_stats = evals[1]["metrics"]
+
+ best_stats["best_C"] = best_C
+
+ logger.info(f"Log regression evaluation done in {int(time.time() - start)}s")
+ return best_stats
+
+
+def eval_log_regression_with_model(
+ model,
+ train_dataset_str="ImageNet:split=TRAIN",
+ val_dataset_str="ImageNet:split=VAL",
+ finetune_dataset_str=None,
+ autocast_dtype=torch.float,
+ finetune_on_val=False,
+ metric_type=MetricType.MEAN_ACCURACY,
+ train_dtype=torch.float64,
+ train_features_device=_CPU_DEVICE,
+ max_train_iters=DEFAULT_MAX_ITER,
+):
+ cudnn.benchmark = True
+
+ transform = make_classification_eval_transform(resize_size=224)
+ target_transform = None
+
+ train_dataset = make_dataset(dataset_str=train_dataset_str, transform=transform, target_transform=target_transform)
+ val_dataset = make_dataset(dataset_str=val_dataset_str, transform=transform, target_transform=target_transform)
+ if finetune_dataset_str is not None:
+ finetune_dataset = make_dataset(
+ dataset_str=finetune_dataset_str, transform=transform, target_transform=target_transform
+ )
+ else:
+ finetune_dataset = None
+
+ with torch.cuda.amp.autocast(dtype=autocast_dtype):
+ results_dict_logreg = eval_log_regression(
+ model=model,
+ train_dataset=train_dataset,
+ val_dataset=val_dataset,
+ finetune_dataset=finetune_dataset,
+ metric_type=metric_type,
+ batch_size=256,
+ num_workers=0, # 5,
+ finetune_on_val=finetune_on_val,
+ train_dtype=train_dtype,
+ train_features_device=train_features_device,
+ max_train_iters=max_train_iters,
+ )
+
+ results_dict = {
+ "top-1": results_dict_logreg["top-1"].cpu().numpy() * 100.0,
+ "top-5": results_dict_logreg.get("top-5", torch.tensor(0.0)).cpu().numpy() * 100.0,
+ "best_C": results_dict_logreg["best_C"],
+ }
+ logger.info(
+ "\n".join(
+ [
+ "Training of the supervised logistic regression on frozen features completed.\n"
+ "Top-1 test accuracy: {acc:.1f}".format(acc=results_dict["top-1"]),
+ "Top-5 test accuracy: {acc:.1f}".format(acc=results_dict["top-5"]),
+ "obtained for C = {c:.6f}".format(c=results_dict["best_C"]),
+ ]
+ )
+ )
+
+ torch.distributed.barrier()
+ return results_dict
+
+
+def main(args):
+ model, autocast_dtype = setup_and_build_model(args)
+ eval_log_regression_with_model(
+ model=model,
+ train_dataset_str=args.train_dataset_str,
+ val_dataset_str=args.val_dataset_str,
+ finetune_dataset_str=args.finetune_dataset_str,
+ autocast_dtype=autocast_dtype,
+ finetune_on_val=args.finetune_on_val,
+ metric_type=args.metric_type,
+ train_dtype=as_torch_dtype(args.train_dtype),
+ train_features_device=torch.device(args.train_features_device),
+ max_train_iters=args.max_train_iters,
+ )
+ return 0
+
+
+if __name__ == "__main__":
+ description = "DINOv2 logistic regression evaluation"
+ args_parser = get_args_parser(description=description)
+ args = args_parser.parse_args()
+ sys.exit(main(args))
diff --git a/dinov2/dinov2/eval/metrics.py b/dinov2/dinov2/eval/metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..80bf88da224e749dd6b3dd4b2bd90ec99eaec34e
--- /dev/null
+++ b/dinov2/dinov2/eval/metrics.py
@@ -0,0 +1,114 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from enum import Enum
+import logging
+from typing import Any, Dict, Optional
+
+import torch
+from torch import Tensor
+from torchmetrics import Metric, MetricCollection
+from torchmetrics.classification import MulticlassAccuracy
+from torchmetrics.utilities.data import dim_zero_cat, select_topk
+
+
+logger = logging.getLogger("dinov2")
+
+
+class MetricType(Enum):
+ MEAN_ACCURACY = "mean_accuracy"
+ MEAN_PER_CLASS_ACCURACY = "mean_per_class_accuracy"
+ PER_CLASS_ACCURACY = "per_class_accuracy"
+ IMAGENET_REAL_ACCURACY = "imagenet_real_accuracy"
+
+ @property
+ def accuracy_averaging(self):
+ return getattr(AccuracyAveraging, self.name, None)
+
+ def __str__(self):
+ return self.value
+
+
+class AccuracyAveraging(Enum):
+ MEAN_ACCURACY = "micro"
+ MEAN_PER_CLASS_ACCURACY = "macro"
+ PER_CLASS_ACCURACY = "none"
+
+ def __str__(self):
+ return self.value
+
+
+def build_metric(metric_type: MetricType, *, num_classes: int, ks: Optional[tuple] = None):
+ if metric_type.accuracy_averaging is not None:
+ return build_topk_accuracy_metric(
+ average_type=metric_type.accuracy_averaging,
+ num_classes=num_classes,
+ ks=(1, 5) if ks is None else ks,
+ )
+ elif metric_type == MetricType.IMAGENET_REAL_ACCURACY:
+ return build_topk_imagenet_real_accuracy_metric(
+ num_classes=num_classes,
+ ks=(1, 5) if ks is None else ks,
+ )
+
+ raise ValueError(f"Unknown metric type {metric_type}")
+
+
+def build_topk_accuracy_metric(average_type: AccuracyAveraging, num_classes: int, ks: tuple = (1, 5)):
+ metrics: Dict[str, Metric] = {
+ f"top-{k}": MulticlassAccuracy(top_k=k, num_classes=int(num_classes), average=average_type.value) for k in ks
+ }
+ return MetricCollection(metrics)
+
+
+def build_topk_imagenet_real_accuracy_metric(num_classes: int, ks: tuple = (1, 5)):
+ metrics: Dict[str, Metric] = {f"top-{k}": ImageNetReaLAccuracy(top_k=k, num_classes=int(num_classes)) for k in ks}
+ return MetricCollection(metrics)
+
+
+class ImageNetReaLAccuracy(Metric):
+ is_differentiable: bool = False
+ higher_is_better: Optional[bool] = None
+ full_state_update: bool = False
+
+ def __init__(
+ self,
+ num_classes: int,
+ top_k: int = 1,
+ **kwargs: Any,
+ ) -> None:
+ super().__init__(**kwargs)
+ self.num_classes = num_classes
+ self.top_k = top_k
+ self.add_state("tp", [], dist_reduce_fx="cat")
+
+ def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore
+ # preds [B, D]
+ # target [B, A]
+ # preds_oh [B, D] with 0 and 1
+ # select top K highest probabilities, use one hot representation
+ preds_oh = select_topk(preds, self.top_k)
+ # target_oh [B, D + 1] with 0 and 1
+ target_oh = torch.zeros((preds_oh.shape[0], preds_oh.shape[1] + 1), device=target.device, dtype=torch.int32)
+ target = target.long()
+ # for undefined targets (-1) use a fake value `num_classes`
+ target[target == -1] = self.num_classes
+ # fill targets, use one hot representation
+ target_oh.scatter_(1, target, 1)
+ # target_oh [B, D] (remove the fake target at index `num_classes`)
+ target_oh = target_oh[:, :-1]
+ # tp [B] with 0 and 1
+ tp = (preds_oh * target_oh == 1).sum(dim=1)
+ # at least one match between prediction and target
+ tp.clip_(max=1)
+ # ignore instances where no targets are defined
+ mask = target_oh.sum(dim=1) > 0
+ tp = tp[mask]
+ self.tp.append(tp) # type: ignore
+
+ def compute(self) -> Tensor:
+ tp = dim_zero_cat(self.tp) # type: ignore
+ return tp.float().mean()
diff --git a/dinov2/dinov2/eval/setup.py b/dinov2/dinov2/eval/setup.py
new file mode 100644
index 0000000000000000000000000000000000000000..529b35232432516705ae9752749b5c30f975bc49
--- /dev/null
+++ b/dinov2/dinov2/eval/setup.py
@@ -0,0 +1,76 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+from typing import Any, List, Optional, Tuple
+
+import torch
+import torch.backends.cudnn as cudnn
+
+from dinov2.models import build_model_from_cfg
+from dinov2.utils.config import setup
+import dinov2.utils.utils as dinov2_utils
+
+
+def get_args_parser(
+ description: Optional[str] = None,
+ parents: Optional[List[argparse.ArgumentParser]] = [],
+ add_help: bool = True,
+):
+ parser = argparse.ArgumentParser(
+ description=description,
+ parents=parents,
+ add_help=add_help,
+ )
+ parser.add_argument(
+ "--config-file",
+ type=str,
+ help="Model configuration file",
+ )
+ parser.add_argument(
+ "--pretrained-weights",
+ type=str,
+ help="Pretrained model weights",
+ )
+ parser.add_argument(
+ "--output-dir",
+ default="",
+ type=str,
+ help="Output directory to write results and logs",
+ )
+ parser.add_argument(
+ "--opts",
+ help="Extra configuration options",
+ default=[],
+ nargs="+",
+ )
+ return parser
+
+
+def get_autocast_dtype(config):
+ teacher_dtype_str = config.compute_precision.teacher.backbone.mixed_precision.param_dtype
+ if teacher_dtype_str == "fp16":
+ return torch.half
+ elif teacher_dtype_str == "bf16":
+ return torch.bfloat16
+ else:
+ return torch.float
+
+
+def build_model_for_eval(config, pretrained_weights):
+ model, _ = build_model_from_cfg(config, only_teacher=True)
+ dinov2_utils.load_pretrained_weights(model, pretrained_weights, "teacher")
+ model.eval()
+ model.cuda()
+ return model
+
+
+def setup_and_build_model(args) -> Tuple[Any, torch.dtype]:
+ cudnn.benchmark = True
+ config = setup(args)
+ model = build_model_for_eval(config, args.pretrained_weights)
+ autocast_dtype = get_autocast_dtype(config)
+ return model, autocast_dtype
diff --git a/dinov2/dinov2/eval/utils.py b/dinov2/dinov2/eval/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..b2f7e34f41ba6a0b911023e0c5375eef21f426fa
--- /dev/null
+++ b/dinov2/dinov2/eval/utils.py
@@ -0,0 +1,147 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+from typing import Dict, Optional
+
+import torch
+from torch import nn
+from torchmetrics import MetricCollection
+
+from dinov2.data import DatasetWithEnumeratedTargets, SamplerType, make_data_loader
+import dinov2.distributed as distributed
+from dinov2.logging import MetricLogger
+
+
+logger = logging.getLogger("dinov2")
+
+
+class ModelWithNormalize(torch.nn.Module):
+ def __init__(self, model):
+ super().__init__()
+ self.model = model
+
+ def forward(self, samples):
+ return nn.functional.normalize(self.model(samples), dim=1, p=2)
+
+
+class ModelWithIntermediateLayers(nn.Module):
+ def __init__(self, feature_model, n_last_blocks, autocast_ctx):
+ super().__init__()
+ self.feature_model = feature_model
+ self.feature_model.eval()
+ self.n_last_blocks = n_last_blocks
+ self.autocast_ctx = autocast_ctx
+
+ def forward(self, images):
+ with torch.inference_mode():
+ with self.autocast_ctx():
+ features = self.feature_model.get_intermediate_layers(
+ images, self.n_last_blocks, return_class_token=True
+ )
+ return features
+
+
+@torch.inference_mode()
+def evaluate(
+ model: nn.Module,
+ data_loader,
+ postprocessors: Dict[str, nn.Module],
+ metrics: Dict[str, MetricCollection],
+ device: torch.device,
+ criterion: Optional[nn.Module] = None,
+):
+ model.eval()
+ if criterion is not None:
+ criterion.eval()
+
+ for metric in metrics.values():
+ metric = metric.to(device)
+
+ metric_logger = MetricLogger(delimiter=" ")
+ header = "Test:"
+
+ for samples, targets, *_ in metric_logger.log_every(data_loader, 10, header):
+ outputs = model(samples.to(device))
+ targets = targets.to(device)
+
+ if criterion is not None:
+ loss = criterion(outputs, targets)
+ metric_logger.update(loss=loss.item())
+
+ for k, metric in metrics.items():
+ metric_inputs = postprocessors[k](outputs, targets)
+ metric.update(**metric_inputs)
+
+ metric_logger.synchronize_between_processes()
+ logger.info(f"Averaged stats: {metric_logger}")
+
+ stats = {k: metric.compute() for k, metric in metrics.items()}
+ metric_logger_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
+ return metric_logger_stats, stats
+
+
+def all_gather_and_flatten(tensor_rank):
+ tensor_all_ranks = torch.empty(
+ distributed.get_global_size(),
+ *tensor_rank.shape,
+ dtype=tensor_rank.dtype,
+ device=tensor_rank.device,
+ )
+ tensor_list = list(tensor_all_ranks.unbind(0))
+ torch.distributed.all_gather(tensor_list, tensor_rank.contiguous())
+ return tensor_all_ranks.flatten(end_dim=1)
+
+
+def extract_features(model, dataset, batch_size, num_workers, gather_on_cpu=False):
+ dataset_with_enumerated_targets = DatasetWithEnumeratedTargets(dataset)
+ sample_count = len(dataset_with_enumerated_targets)
+ data_loader = make_data_loader(
+ dataset=dataset_with_enumerated_targets,
+ batch_size=batch_size,
+ num_workers=num_workers,
+ sampler_type=SamplerType.DISTRIBUTED,
+ drop_last=False,
+ shuffle=False,
+ )
+ return extract_features_with_dataloader(model, data_loader, sample_count, gather_on_cpu)
+
+
+@torch.inference_mode()
+def extract_features_with_dataloader(model, data_loader, sample_count, gather_on_cpu=False):
+ gather_device = torch.device("cpu") if gather_on_cpu else torch.device("cuda")
+ metric_logger = MetricLogger(delimiter=" ")
+ features, all_labels = None, None
+ for samples, (index, labels_rank) in metric_logger.log_every(data_loader, 10):
+ samples = samples.cuda(non_blocking=True)
+ labels_rank = labels_rank.cuda(non_blocking=True)
+ index = index.cuda(non_blocking=True)
+ features_rank = model(samples).float()
+
+ # init storage feature matrix
+ if features is None:
+ features = torch.zeros(sample_count, features_rank.shape[-1], device=gather_device)
+ labels_shape = list(labels_rank.shape)
+ labels_shape[0] = sample_count
+ all_labels = torch.full(labels_shape, fill_value=-1, device=gather_device)
+ logger.info(f"Storing features into tensor of shape {features.shape}")
+
+ # share indexes, features and labels between processes
+ index_all = all_gather_and_flatten(index).to(gather_device)
+ features_all_ranks = all_gather_and_flatten(features_rank).to(gather_device)
+ labels_all_ranks = all_gather_and_flatten(labels_rank).to(gather_device)
+
+ # update storage feature matrix
+ if len(index_all) > 0:
+ features.index_copy_(0, index_all, features_all_ranks)
+ all_labels.index_copy_(0, index_all, labels_all_ranks)
+
+ logger.info(f"Features shape: {tuple(features.shape)}")
+ logger.info(f"Labels shape: {tuple(all_labels.shape)}")
+
+ assert torch.all(all_labels > -1)
+
+ return features, all_labels
diff --git a/dinov2/dinov2/fsdp/__init__.py b/dinov2/dinov2/fsdp/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..71d20397611619e6a02ea07f5305d650ffef2a51
--- /dev/null
+++ b/dinov2/dinov2/fsdp/__init__.py
@@ -0,0 +1,158 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import os
+from typing import Any
+
+import torch
+import dinov2.distributed as distributed
+from functools import partial
+from fvcore.common.checkpoint import Checkpointer
+from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
+from torch.distributed.fsdp import ShardingStrategy
+from torch.distributed.fsdp import MixedPrecision
+from torch.distributed.fsdp import StateDictType
+from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
+from torch.distributed.fsdp.wrap import ModuleWrapPolicy
+from torch.distributed.fsdp._runtime_utils import _reshard
+
+
+def get_fsdp_wrapper(model_cfg, modules_to_wrap=set()):
+ sharding_strategy_dict = {
+ "NO_SHARD": ShardingStrategy.NO_SHARD,
+ "SHARD_GRAD_OP": ShardingStrategy.SHARD_GRAD_OP,
+ "FULL_SHARD": ShardingStrategy.FULL_SHARD,
+ }
+
+ dtype_dict = {
+ "fp32": torch.float32,
+ "fp16": torch.float16,
+ "bf16": torch.bfloat16,
+ }
+
+ mixed_precision_config = MixedPrecision(
+ param_dtype=dtype_dict[model_cfg.mixed_precision.param_dtype],
+ reduce_dtype=dtype_dict[model_cfg.mixed_precision.reduce_dtype],
+ buffer_dtype=dtype_dict[model_cfg.mixed_precision.buffer_dtype],
+ )
+
+ sharding_strategy_config = sharding_strategy_dict[model_cfg.sharding_strategy]
+
+ local_rank = distributed.get_local_rank()
+
+ fsdp_wrapper = partial(
+ FSDP,
+ sharding_strategy=sharding_strategy_config,
+ mixed_precision=mixed_precision_config,
+ device_id=local_rank,
+ sync_module_states=True,
+ use_orig_params=True,
+ auto_wrap_policy=ModuleWrapPolicy(modules_to_wrap),
+ )
+ return fsdp_wrapper
+
+
+def is_fsdp(x):
+ return isinstance(x, FSDP)
+
+
+def is_sharded_fsdp(x):
+ return is_fsdp(x) and x.sharding_strategy is not ShardingStrategy.NO_SHARD
+
+
+def free_if_fsdp(x):
+ if is_sharded_fsdp(x):
+ handles = x._handles
+ true_list = [True for h in handles]
+ _reshard(x, handles, true_list)
+
+
+def get_fsdp_modules(x):
+ return FSDP.fsdp_modules(x)
+
+
+def reshard_fsdp_model(x):
+ for m in get_fsdp_modules(x):
+ free_if_fsdp(m)
+
+
+def rankstr():
+ return f"rank_{distributed.get_global_rank()}"
+
+
+class FSDPCheckpointer(Checkpointer):
+ def save(self, name: str, **kwargs: Any) -> None:
+ """
+ Dump model and checkpointables to a file.
+
+ Args:
+ name (str): name of the file.
+ kwargs (dict): extra arbitrary data to save.
+ """
+ if not self.save_dir or not self.save_to_disk:
+ return
+
+ data = {}
+ with FSDP.state_dict_type(self.model, StateDictType.LOCAL_STATE_DICT):
+ data["model"] = self.model.state_dict()
+
+ # data["model"] = self.model.state_dict()
+ for key, obj in self.checkpointables.items():
+ data[key] = obj.state_dict()
+ data.update(kwargs)
+
+ basename = f"{name}.{rankstr()}.pth"
+ save_file = os.path.join(self.save_dir, basename)
+ assert os.path.basename(save_file) == basename, basename
+ self.logger.info("Saving checkpoint to {}".format(save_file))
+ with self.path_manager.open(save_file, "wb") as f:
+ torch.save(data, f)
+ self.tag_last_checkpoint(basename)
+
+ def load(self, *args, **kwargs):
+ with FSDP.state_dict_type(self.model, StateDictType.LOCAL_STATE_DICT):
+ return super().load(*args, **kwargs)
+
+ def has_checkpoint(self) -> bool:
+ """
+ Returns:
+ bool: whether a checkpoint exists in the target directory.
+ """
+ save_file = os.path.join(self.save_dir, f"last_checkpoint.{rankstr()}")
+ return self.path_manager.exists(save_file)
+
+ def get_checkpoint_file(self) -> str:
+ """
+ Returns:
+ str: The latest checkpoint file in target directory.
+ """
+ save_file = os.path.join(self.save_dir, f"last_checkpoint.{rankstr()}")
+ try:
+ with self.path_manager.open(save_file, "r") as f:
+ last_saved = f.read().strip()
+ except IOError:
+ # if file doesn't exist, maybe because it has just been
+ # deleted by a separate process
+ return ""
+ # pyre-fixme[6]: For 2nd param expected `Union[PathLike[str], str]` but got
+ # `Union[bytes, str]`.
+ return os.path.join(self.save_dir, last_saved)
+
+ def tag_last_checkpoint(self, last_filename_basename: str) -> None:
+ """
+ Tag the last checkpoint.
+
+ Args:
+ last_filename_basename (str): the basename of the last filename.
+ """
+ if distributed.is_enabled():
+ torch.distributed.barrier()
+ save_file = os.path.join(self.save_dir, f"last_checkpoint.{rankstr()}")
+ with self.path_manager.open(save_file, "w") as f:
+ f.write(last_filename_basename) # pyre-ignore
+
+
+ShardedGradScaler = ShardedGradScaler
diff --git a/dinov2/dinov2/layers/__init__.py b/dinov2/dinov2/layers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..31f196aacac5be8a7c537a3dfa8f97084671b466
--- /dev/null
+++ b/dinov2/dinov2/layers/__init__.py
@@ -0,0 +1,12 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from .dino_head import DINOHead
+from .mlp import Mlp
+from .patch_embed import PatchEmbed
+from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
+from .block import NestedTensorBlock
+from .attention import MemEffAttention
diff --git a/dinov2/dinov2/layers/attention.py b/dinov2/dinov2/layers/attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..c789ebd880f3eecf5c336230b4e3babe66ad2cfc
--- /dev/null
+++ b/dinov2/dinov2/layers/attention.py
@@ -0,0 +1,85 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+# References:
+# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
+# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
+
+import logging
+
+from torch import Tensor
+from torch import nn
+
+
+logger = logging.getLogger("dinov2")
+
+
+try:
+ from xformers.ops import memory_efficient_attention, unbind, fmha
+
+ XFORMERS_AVAILABLE = True
+except ImportError:
+ logger.warning("xFormers not available")
+ XFORMERS_AVAILABLE = False
+
+
+class Attention(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ num_heads: int = 8,
+ qkv_bias: bool = False,
+ proj_bias: bool = True,
+ attn_drop: float = 0.0,
+ proj_drop: float = 0.0,
+ ) -> None:
+ super().__init__()
+ self.num_heads = num_heads
+ head_dim = dim // num_heads
+ self.scale = head_dim**-0.5
+
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
+ self.attn_drop = nn.Dropout(attn_drop)
+ self.proj = nn.Linear(dim, dim, bias=proj_bias)
+ self.proj_drop = nn.Dropout(proj_drop)
+
+ def forward(self, x: Tensor) -> Tensor:
+ B, N, C = x.shape
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
+
+ q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
+ attn = q @ k.transpose(-2, -1)
+
+ attn = attn.softmax(dim=-1)
+ attn = self.attn_drop(attn)
+
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
+ x = self.proj(x)
+ x = self.proj_drop(x)
+ return x
+
+
+class MemEffAttention(Attention):
+ def forward(self, x: Tensor, attn_bias=None) -> Tensor:
+ if not XFORMERS_AVAILABLE:
+ assert attn_bias is None, "xFormers is required for nested tensors usage"
+ return super().forward(x)
+
+ B, N, C = x.shape
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
+
+ q, k, v = unbind(qkv, 2)
+
+ if attn_bias is not None:
+ self_att_op = fmha.MemoryEfficientAttentionFlashAttentionOp
+ else:
+ self_att_op = None
+ x = memory_efficient_attention(q, k, v, attn_bias=attn_bias, op=self_att_op)
+ x = x.reshape([B, N, C])
+
+ x = self.proj(x)
+ x = self.proj_drop(x)
+ return x
diff --git a/dinov2/dinov2/layers/block.py b/dinov2/dinov2/layers/block.py
new file mode 100644
index 0000000000000000000000000000000000000000..25488f57cc0ad3c692f86b62555f6668e2a66db1
--- /dev/null
+++ b/dinov2/dinov2/layers/block.py
@@ -0,0 +1,252 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+# References:
+# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
+# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
+
+import logging
+from typing import Callable, List, Any, Tuple, Dict
+
+import torch
+from torch import nn, Tensor
+
+from .attention import Attention, MemEffAttention
+from .drop_path import DropPath
+from .layer_scale import LayerScale
+from .mlp import Mlp
+
+
+logger = logging.getLogger("dinov2")
+
+
+try:
+ from xformers.ops import fmha
+ from xformers.ops import scaled_index_add, index_select_cat
+
+ XFORMERS_AVAILABLE = True
+except ImportError:
+ logger.warning("xFormers not available")
+ XFORMERS_AVAILABLE = False
+
+
+class Block(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ num_heads: int,
+ mlp_ratio: float = 4.0,
+ qkv_bias: bool = False,
+ proj_bias: bool = True,
+ ffn_bias: bool = True,
+ drop: float = 0.0,
+ attn_drop: float = 0.0,
+ init_values=None,
+ drop_path: float = 0.0,
+ act_layer: Callable[..., nn.Module] = nn.GELU,
+ norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
+ attn_class: Callable[..., nn.Module] = Attention,
+ ffn_layer: Callable[..., nn.Module] = Mlp,
+ ) -> None:
+ super().__init__()
+ # print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
+ self.norm1 = norm_layer(dim)
+ self.attn = attn_class(
+ dim,
+ num_heads=num_heads,
+ qkv_bias=qkv_bias,
+ proj_bias=proj_bias,
+ attn_drop=attn_drop,
+ proj_drop=drop,
+ )
+ self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+
+ self.norm2 = norm_layer(dim)
+ mlp_hidden_dim = int(dim * mlp_ratio)
+ self.mlp = ffn_layer(
+ in_features=dim,
+ hidden_features=mlp_hidden_dim,
+ act_layer=act_layer,
+ drop=drop,
+ bias=ffn_bias,
+ )
+ self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
+ self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+
+ self.sample_drop_ratio = drop_path
+
+ def forward(self, x: Tensor) -> Tensor:
+ def attn_residual_func(x: Tensor) -> Tensor:
+ return self.ls1(self.attn(self.norm1(x)))
+
+ def ffn_residual_func(x: Tensor) -> Tensor:
+ return self.ls2(self.mlp(self.norm2(x)))
+
+ if self.training and self.sample_drop_ratio > 0.1:
+ # the overhead is compensated only for a drop path rate larger than 0.1
+ x = drop_add_residual_stochastic_depth(
+ x,
+ residual_func=attn_residual_func,
+ sample_drop_ratio=self.sample_drop_ratio,
+ )
+ x = drop_add_residual_stochastic_depth(
+ x,
+ residual_func=ffn_residual_func,
+ sample_drop_ratio=self.sample_drop_ratio,
+ )
+ elif self.training and self.sample_drop_ratio > 0.0:
+ x = x + self.drop_path1(attn_residual_func(x))
+ x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
+ else:
+ x = x + attn_residual_func(x)
+ x = x + ffn_residual_func(x)
+ return x
+
+
+def drop_add_residual_stochastic_depth(
+ x: Tensor,
+ residual_func: Callable[[Tensor], Tensor],
+ sample_drop_ratio: float = 0.0,
+) -> Tensor:
+ # 1) extract subset using permutation
+ b, n, d = x.shape
+ sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
+ brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
+ x_subset = x[brange]
+
+ # 2) apply residual_func to get residual
+ residual = residual_func(x_subset)
+
+ x_flat = x.flatten(1)
+ residual = residual.flatten(1)
+
+ residual_scale_factor = b / sample_subset_size
+
+ # 3) add the residual
+ x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
+ return x_plus_residual.view_as(x)
+
+
+def get_branges_scales(x, sample_drop_ratio=0.0):
+ b, n, d = x.shape
+ sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
+ brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
+ residual_scale_factor = b / sample_subset_size
+ return brange, residual_scale_factor
+
+
+def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
+ if scaling_vector is None:
+ x_flat = x.flatten(1)
+ residual = residual.flatten(1)
+ x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
+ else:
+ x_plus_residual = scaled_index_add(
+ x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
+ )
+ return x_plus_residual
+
+
+attn_bias_cache: Dict[Tuple, Any] = {}
+
+
+def get_attn_bias_and_cat(x_list, branges=None):
+ """
+ this will perform the index select, cat the tensors, and provide the attn_bias from cache
+ """
+ batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
+ all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
+ if all_shapes not in attn_bias_cache.keys():
+ seqlens = []
+ for b, x in zip(batch_sizes, x_list):
+ for _ in range(b):
+ seqlens.append(x.shape[1])
+ attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
+ attn_bias._batch_sizes = batch_sizes
+ attn_bias_cache[all_shapes] = attn_bias
+
+ if branges is not None:
+ cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
+ else:
+ tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
+ cat_tensors = torch.cat(tensors_bs1, dim=1)
+
+ return attn_bias_cache[all_shapes], cat_tensors
+
+
+def drop_add_residual_stochastic_depth_list(
+ x_list: List[Tensor],
+ residual_func: Callable[[Tensor, Any], Tensor],
+ sample_drop_ratio: float = 0.0,
+ scaling_vector=None,
+) -> Tensor:
+ # 1) generate random set of indices for dropping samples in the batch
+ branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
+ branges = [s[0] for s in branges_scales]
+ residual_scale_factors = [s[1] for s in branges_scales]
+
+ # 2) get attention bias and index+concat the tensors
+ attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
+
+ # 3) apply residual_func to get residual, and split the result
+ residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
+
+ outputs = []
+ for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
+ outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
+ return outputs
+
+
+class NestedTensorBlock(Block):
+ def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
+ """
+ x_list contains a list of tensors to nest together and run
+ """
+ assert isinstance(self.attn, MemEffAttention)
+
+ if self.training and self.sample_drop_ratio > 0.0:
+
+ def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
+ return self.attn(self.norm1(x), attn_bias=attn_bias)
+
+ def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
+ return self.mlp(self.norm2(x))
+
+ x_list = drop_add_residual_stochastic_depth_list(
+ x_list,
+ residual_func=attn_residual_func,
+ sample_drop_ratio=self.sample_drop_ratio,
+ scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
+ )
+ x_list = drop_add_residual_stochastic_depth_list(
+ x_list,
+ residual_func=ffn_residual_func,
+ sample_drop_ratio=self.sample_drop_ratio,
+ scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
+ )
+ return x_list
+ else:
+
+ def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
+ return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
+
+ def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
+ return self.ls2(self.mlp(self.norm2(x)))
+
+ attn_bias, x = get_attn_bias_and_cat(x_list)
+ x = x + attn_residual_func(x, attn_bias=attn_bias)
+ x = x + ffn_residual_func(x)
+ return attn_bias.split(x)
+
+ def forward(self, x_or_x_list):
+ if isinstance(x_or_x_list, Tensor):
+ return super().forward(x_or_x_list)
+ elif isinstance(x_or_x_list, list):
+ assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
+ return self.forward_nested(x_or_x_list)
+ else:
+ raise AssertionError
diff --git a/dinov2/dinov2/layers/dino_head.py b/dinov2/dinov2/layers/dino_head.py
new file mode 100644
index 0000000000000000000000000000000000000000..7212db92a4fd8d4c7230e284e551a0234e9d8623
--- /dev/null
+++ b/dinov2/dinov2/layers/dino_head.py
@@ -0,0 +1,59 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+import torch.nn as nn
+from torch.nn.init import trunc_normal_
+from torch.nn.utils import weight_norm
+
+
+class DINOHead(nn.Module):
+ def __init__(
+ self,
+ in_dim,
+ out_dim,
+ use_bn=False,
+ nlayers=3,
+ hidden_dim=2048,
+ bottleneck_dim=256,
+ mlp_bias=True,
+ ):
+ super().__init__()
+ nlayers = max(nlayers, 1)
+ self.mlp = _build_mlp(nlayers, in_dim, bottleneck_dim, hidden_dim=hidden_dim, use_bn=use_bn, bias=mlp_bias)
+ self.apply(self._init_weights)
+ self.last_layer = weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
+ self.last_layer.weight_g.data.fill_(1)
+
+ def _init_weights(self, m):
+ if isinstance(m, nn.Linear):
+ trunc_normal_(m.weight, std=0.02)
+ if isinstance(m, nn.Linear) and m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+
+ def forward(self, x):
+ x = self.mlp(x)
+ eps = 1e-6 if x.dtype == torch.float16 else 1e-12
+ x = nn.functional.normalize(x, dim=-1, p=2, eps=eps)
+ x = self.last_layer(x)
+ return x
+
+
+def _build_mlp(nlayers, in_dim, bottleneck_dim, hidden_dim=None, use_bn=False, bias=True):
+ if nlayers == 1:
+ return nn.Linear(in_dim, bottleneck_dim, bias=bias)
+ else:
+ layers = [nn.Linear(in_dim, hidden_dim, bias=bias)]
+ if use_bn:
+ layers.append(nn.BatchNorm1d(hidden_dim))
+ layers.append(nn.GELU())
+ for _ in range(nlayers - 2):
+ layers.append(nn.Linear(hidden_dim, hidden_dim, bias=bias))
+ if use_bn:
+ layers.append(nn.BatchNorm1d(hidden_dim))
+ layers.append(nn.GELU())
+ layers.append(nn.Linear(hidden_dim, bottleneck_dim, bias=bias))
+ return nn.Sequential(*layers)
diff --git a/dinov2/dinov2/layers/drop_path.py b/dinov2/dinov2/layers/drop_path.py
new file mode 100644
index 0000000000000000000000000000000000000000..af05625984dd14682cc96a63bf0c97bab1f123b1
--- /dev/null
+++ b/dinov2/dinov2/layers/drop_path.py
@@ -0,0 +1,35 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+# References:
+# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
+# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
+
+
+from torch import nn
+
+
+def drop_path(x, drop_prob: float = 0.0, training: bool = False):
+ if drop_prob == 0.0 or not training:
+ return x
+ keep_prob = 1 - drop_prob
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
+ if keep_prob > 0.0:
+ random_tensor.div_(keep_prob)
+ output = x * random_tensor
+ return output
+
+
+class DropPath(nn.Module):
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
+
+ def __init__(self, drop_prob=None):
+ super(DropPath, self).__init__()
+ self.drop_prob = drop_prob
+
+ def forward(self, x):
+ return drop_path(x, self.drop_prob, self.training)
diff --git a/dinov2/dinov2/layers/layer_scale.py b/dinov2/dinov2/layers/layer_scale.py
new file mode 100644
index 0000000000000000000000000000000000000000..ca5daa52bd81d3581adeb2198ea5b7dba2a3aea1
--- /dev/null
+++ b/dinov2/dinov2/layers/layer_scale.py
@@ -0,0 +1,28 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+# Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
+
+from typing import Union
+
+import torch
+from torch import Tensor
+from torch import nn
+
+
+class LayerScale(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ init_values: Union[float, Tensor] = 1e-5,
+ inplace: bool = False,
+ ) -> None:
+ super().__init__()
+ self.inplace = inplace
+ self.gamma = nn.Parameter(init_values * torch.ones(dim))
+
+ def forward(self, x: Tensor) -> Tensor:
+ return x.mul_(self.gamma) if self.inplace else x * self.gamma
diff --git a/dinov2/dinov2/layers/mlp.py b/dinov2/dinov2/layers/mlp.py
new file mode 100644
index 0000000000000000000000000000000000000000..5e4b315f972f9a9f54aef1e4ef4e81b52976f018
--- /dev/null
+++ b/dinov2/dinov2/layers/mlp.py
@@ -0,0 +1,41 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+# References:
+# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
+# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
+
+
+from typing import Callable, Optional
+
+from torch import Tensor, nn
+
+
+class Mlp(nn.Module):
+ def __init__(
+ self,
+ in_features: int,
+ hidden_features: Optional[int] = None,
+ out_features: Optional[int] = None,
+ act_layer: Callable[..., nn.Module] = nn.GELU,
+ drop: float = 0.0,
+ bias: bool = True,
+ ) -> None:
+ super().__init__()
+ out_features = out_features or in_features
+ hidden_features = hidden_features or in_features
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
+ self.act = act_layer()
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
+ self.drop = nn.Dropout(drop)
+
+ def forward(self, x: Tensor) -> Tensor:
+ x = self.fc1(x)
+ x = self.act(x)
+ x = self.drop(x)
+ x = self.fc2(x)
+ x = self.drop(x)
+ return x
diff --git a/dinov2/dinov2/layers/patch_embed.py b/dinov2/dinov2/layers/patch_embed.py
new file mode 100644
index 0000000000000000000000000000000000000000..574abe41175568d700a389b8b96d1ba554914779
--- /dev/null
+++ b/dinov2/dinov2/layers/patch_embed.py
@@ -0,0 +1,89 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+# References:
+# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
+# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
+
+from typing import Callable, Optional, Tuple, Union
+
+from torch import Tensor
+import torch.nn as nn
+
+
+def make_2tuple(x):
+ if isinstance(x, tuple):
+ assert len(x) == 2
+ return x
+
+ assert isinstance(x, int)
+ return (x, x)
+
+
+class PatchEmbed(nn.Module):
+ """
+ 2D image to patch embedding: (B,C,H,W) -> (B,N,D)
+
+ Args:
+ img_size: Image size.
+ patch_size: Patch token size.
+ in_chans: Number of input image channels.
+ embed_dim: Number of linear projection output channels.
+ norm_layer: Normalization layer.
+ """
+
+ def __init__(
+ self,
+ img_size: Union[int, Tuple[int, int]] = 224,
+ patch_size: Union[int, Tuple[int, int]] = 16,
+ in_chans: int = 3,
+ embed_dim: int = 768,
+ norm_layer: Optional[Callable] = None,
+ flatten_embedding: bool = True,
+ ) -> None:
+ super().__init__()
+
+ image_HW = make_2tuple(img_size)
+ patch_HW = make_2tuple(patch_size)
+ patch_grid_size = (
+ image_HW[0] // patch_HW[0],
+ image_HW[1] // patch_HW[1],
+ )
+
+ self.img_size = image_HW
+ self.patch_size = patch_HW
+ self.patches_resolution = patch_grid_size
+ self.num_patches = patch_grid_size[0] * patch_grid_size[1]
+
+ self.in_chans = in_chans
+ self.embed_dim = embed_dim
+
+ self.flatten_embedding = flatten_embedding
+
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
+
+ def forward(self, x: Tensor) -> Tensor:
+ _, _, H, W = x.shape
+ patch_H, patch_W = self.patch_size
+
+ assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
+ assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
+
+ x = self.proj(x) # B C H W
+ H, W = x.size(2), x.size(3)
+ x = x.flatten(2).transpose(1, 2) # B HW C
+ x = self.norm(x)
+ if not self.flatten_embedding:
+ x = x.reshape(-1, H, W, self.embed_dim) # B H W C
+ return x
+
+ def flops(self) -> float:
+ Ho, Wo = self.patches_resolution
+ flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
+ if self.norm is not None:
+ flops += Ho * Wo * self.embed_dim
+ return flops
diff --git a/dinov2/dinov2/layers/swiglu_ffn.py b/dinov2/dinov2/layers/swiglu_ffn.py
new file mode 100644
index 0000000000000000000000000000000000000000..b3324b266fb0a50ccf8c3a0ede2ae10ac4dfa03e
--- /dev/null
+++ b/dinov2/dinov2/layers/swiglu_ffn.py
@@ -0,0 +1,63 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import Callable, Optional
+
+from torch import Tensor, nn
+import torch.nn.functional as F
+
+
+class SwiGLUFFN(nn.Module):
+ def __init__(
+ self,
+ in_features: int,
+ hidden_features: Optional[int] = None,
+ out_features: Optional[int] = None,
+ act_layer: Callable[..., nn.Module] = None,
+ drop: float = 0.0,
+ bias: bool = True,
+ ) -> None:
+ super().__init__()
+ out_features = out_features or in_features
+ hidden_features = hidden_features or in_features
+ self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
+ self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
+
+ def forward(self, x: Tensor) -> Tensor:
+ x12 = self.w12(x)
+ x1, x2 = x12.chunk(2, dim=-1)
+ hidden = F.silu(x1) * x2
+ return self.w3(hidden)
+
+
+try:
+ from xformers.ops import SwiGLU
+
+ XFORMERS_AVAILABLE = True
+except ImportError:
+ SwiGLU = SwiGLUFFN
+ XFORMERS_AVAILABLE = False
+
+
+class SwiGLUFFNFused(SwiGLU):
+ def __init__(
+ self,
+ in_features: int,
+ hidden_features: Optional[int] = None,
+ out_features: Optional[int] = None,
+ act_layer: Callable[..., nn.Module] = None,
+ drop: float = 0.0,
+ bias: bool = True,
+ ) -> None:
+ out_features = out_features or in_features
+ hidden_features = hidden_features or in_features
+ hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
+ super().__init__(
+ in_features=in_features,
+ hidden_features=hidden_features,
+ out_features=out_features,
+ bias=bias,
+ )
diff --git a/dinov2/dinov2/logging/__init__.py b/dinov2/dinov2/logging/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e80dadb2d57056e9f6f4989cd24a3c7e26fee23f
--- /dev/null
+++ b/dinov2/dinov2/logging/__init__.py
@@ -0,0 +1,103 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import functools
+import logging
+import os
+import sys
+from typing import Optional
+
+import dinov2.distributed as distributed
+from .helpers import MetricLogger, SmoothedValue
+
+
+# So that calling _configure_logger multiple times won't add many handlers
+@functools.lru_cache()
+def _configure_logger(
+ name: Optional[str] = None,
+ *,
+ level: int = logging.DEBUG,
+ output: Optional[str] = None,
+):
+ """
+ Configure a logger.
+
+ Adapted from Detectron2.
+
+ Args:
+ name: The name of the logger to configure.
+ level: The logging level to use.
+ output: A file name or a directory to save log. If None, will not save log file.
+ If ends with ".txt" or ".log", assumed to be a file name.
+ Otherwise, logs will be saved to `output/log.txt`.
+
+ Returns:
+ The configured logger.
+ """
+
+ logger = logging.getLogger(name)
+ logger.setLevel(level)
+ logger.propagate = False
+
+ # Loosely match Google glog format:
+ # [IWEF]yyyymmdd hh:mm:ss.uuuuuu threadid file:line] msg
+ # but use a shorter timestamp and include the logger name:
+ # [IWEF]yyyymmdd hh:mm:ss logger threadid file:line] msg
+ fmt_prefix = "%(levelname).1s%(asctime)s %(process)s %(name)s %(filename)s:%(lineno)s] "
+ fmt_message = "%(message)s"
+ fmt = fmt_prefix + fmt_message
+ datefmt = "%Y%m%d %H:%M:%S"
+ formatter = logging.Formatter(fmt=fmt, datefmt=datefmt)
+
+ # stdout logging for main worker only
+ if distributed.is_main_process():
+ handler = logging.StreamHandler(stream=sys.stdout)
+ handler.setLevel(logging.DEBUG)
+ handler.setFormatter(formatter)
+ logger.addHandler(handler)
+
+ # file logging for all workers
+ if output:
+ if os.path.splitext(output)[-1] in (".txt", ".log"):
+ filename = output
+ else:
+ filename = os.path.join(output, "logs", "log.txt")
+
+ if not distributed.is_main_process():
+ global_rank = distributed.get_global_rank()
+ filename = filename + ".rank{}".format(global_rank)
+
+ os.makedirs(os.path.dirname(filename), exist_ok=True)
+
+ handler = logging.StreamHandler(open(filename, "a"))
+ handler.setLevel(logging.DEBUG)
+ handler.setFormatter(formatter)
+ logger.addHandler(handler)
+
+ return logger
+
+
+def setup_logging(
+ output: Optional[str] = None,
+ *,
+ name: Optional[str] = None,
+ level: int = logging.DEBUG,
+ capture_warnings: bool = True,
+) -> None:
+ """
+ Setup logging.
+
+ Args:
+ output: A file name or a directory to save log files. If None, log
+ files will not be saved. If output ends with ".txt" or ".log", it
+ is assumed to be a file name.
+ Otherwise, logs will be saved to `output/log.txt`.
+ name: The name of the logger to configure, by default the root logger.
+ level: The logging level to use.
+ capture_warnings: Whether warnings should be captured as logs.
+ """
+ logging.captureWarnings(capture_warnings)
+ _configure_logger(name, level=level, output=output)
diff --git a/dinov2/dinov2/logging/helpers.py b/dinov2/dinov2/logging/helpers.py
new file mode 100644
index 0000000000000000000000000000000000000000..16d643500d2ee10ffea5916aad07f9b9d7c0af6d
--- /dev/null
+++ b/dinov2/dinov2/logging/helpers.py
@@ -0,0 +1,195 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from collections import defaultdict, deque
+import datetime
+import json
+import logging
+import time
+
+import torch
+
+import dinov2.distributed as distributed
+
+
+logger = logging.getLogger("dinov2")
+
+
+class MetricLogger(object):
+ def __init__(self, delimiter="\t", output_file=None):
+ self.meters = defaultdict(SmoothedValue)
+ self.delimiter = delimiter
+ self.output_file = output_file
+
+ def update(self, **kwargs):
+ for k, v in kwargs.items():
+ if isinstance(v, torch.Tensor):
+ v = v.item()
+ assert isinstance(v, (float, int))
+ self.meters[k].update(v)
+
+ def __getattr__(self, attr):
+ if attr in self.meters:
+ return self.meters[attr]
+ if attr in self.__dict__:
+ return self.__dict__[attr]
+ raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr))
+
+ def __str__(self):
+ loss_str = []
+ for name, meter in self.meters.items():
+ loss_str.append("{}: {}".format(name, str(meter)))
+ return self.delimiter.join(loss_str)
+
+ def synchronize_between_processes(self):
+ for meter in self.meters.values():
+ meter.synchronize_between_processes()
+
+ def add_meter(self, name, meter):
+ self.meters[name] = meter
+
+ def dump_in_output_file(self, iteration, iter_time, data_time):
+ if self.output_file is None or not distributed.is_main_process():
+ return
+ dict_to_dump = dict(
+ iteration=iteration,
+ iter_time=iter_time,
+ data_time=data_time,
+ )
+ dict_to_dump.update({k: v.median for k, v in self.meters.items()})
+ with open(self.output_file, "a") as f:
+ f.write(json.dumps(dict_to_dump) + "\n")
+ pass
+
+ def log_every(self, iterable, print_freq, header=None, n_iterations=None, start_iteration=0):
+ i = start_iteration
+ if not header:
+ header = ""
+ start_time = time.time()
+ end = time.time()
+ iter_time = SmoothedValue(fmt="{avg:.6f}")
+ data_time = SmoothedValue(fmt="{avg:.6f}")
+
+ if n_iterations is None:
+ n_iterations = len(iterable)
+
+ space_fmt = ":" + str(len(str(n_iterations))) + "d"
+
+ log_list = [
+ header,
+ "[{0" + space_fmt + "}/{1}]",
+ "eta: {eta}",
+ "{meters}",
+ "time: {time}",
+ "data: {data}",
+ ]
+ if torch.cuda.is_available():
+ log_list += ["max mem: {memory:.0f}"]
+
+ log_msg = self.delimiter.join(log_list)
+ MB = 1024.0 * 1024.0
+ for obj in iterable:
+ data_time.update(time.time() - end)
+ yield obj
+ iter_time.update(time.time() - end)
+ if i % print_freq == 0 or i == n_iterations - 1:
+ self.dump_in_output_file(iteration=i, iter_time=iter_time.avg, data_time=data_time.avg)
+ eta_seconds = iter_time.global_avg * (n_iterations - i)
+ eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
+ if torch.cuda.is_available():
+ logger.info(
+ log_msg.format(
+ i,
+ n_iterations,
+ eta=eta_string,
+ meters=str(self),
+ time=str(iter_time),
+ data=str(data_time),
+ memory=torch.cuda.max_memory_allocated() / MB,
+ )
+ )
+ else:
+ logger.info(
+ log_msg.format(
+ i,
+ n_iterations,
+ eta=eta_string,
+ meters=str(self),
+ time=str(iter_time),
+ data=str(data_time),
+ )
+ )
+ i += 1
+ end = time.time()
+ if i >= n_iterations:
+ break
+ total_time = time.time() - start_time
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
+ logger.info("{} Total time: {} ({:.6f} s / it)".format(header, total_time_str, total_time / n_iterations))
+
+
+class SmoothedValue:
+ """Track a series of values and provide access to smoothed values over a
+ window or the global series average.
+ """
+
+ def __init__(self, window_size=20, fmt=None):
+ if fmt is None:
+ fmt = "{median:.4f} ({global_avg:.4f})"
+ self.deque = deque(maxlen=window_size)
+ self.total = 0.0
+ self.count = 0
+ self.fmt = fmt
+
+ def update(self, value, num=1):
+ self.deque.append(value)
+ self.count += num
+ self.total += value * num
+
+ def synchronize_between_processes(self):
+ """
+ Distributed synchronization of the metric
+ Warning: does not synchronize the deque!
+ """
+ if not distributed.is_enabled():
+ return
+ t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
+ torch.distributed.barrier()
+ torch.distributed.all_reduce(t)
+ t = t.tolist()
+ self.count = int(t[0])
+ self.total = t[1]
+
+ @property
+ def median(self):
+ d = torch.tensor(list(self.deque))
+ return d.median().item()
+
+ @property
+ def avg(self):
+ d = torch.tensor(list(self.deque), dtype=torch.float32)
+ return d.mean().item()
+
+ @property
+ def global_avg(self):
+ return self.total / self.count
+
+ @property
+ def max(self):
+ return max(self.deque)
+
+ @property
+ def value(self):
+ return self.deque[-1]
+
+ def __str__(self):
+ return self.fmt.format(
+ median=self.median,
+ avg=self.avg,
+ global_avg=self.global_avg,
+ max=self.max,
+ value=self.value,
+ )
diff --git a/dinov2/dinov2/loss/__init__.py b/dinov2/dinov2/loss/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..477b71b28259bf97b806df3f3d2f392dded866d6
--- /dev/null
+++ b/dinov2/dinov2/loss/__init__.py
@@ -0,0 +1,9 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from .dino_clstoken_loss import DINOLoss
+from .ibot_patch_loss import iBOTPatchLoss
+from .koleo_loss import KoLeoLoss
diff --git a/dinov2/dinov2/loss/dino_clstoken_loss.py b/dinov2/dinov2/loss/dino_clstoken_loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..77ff4ed6da5c7b425f714ac283c09416e398baa5
--- /dev/null
+++ b/dinov2/dinov2/loss/dino_clstoken_loss.py
@@ -0,0 +1,100 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+import torch.distributed as dist
+import torch.nn.functional as F
+from torch import nn
+
+
+class DINOLoss(nn.Module):
+ def __init__(
+ self,
+ out_dim,
+ student_temp=0.1,
+ center_momentum=0.9,
+ ):
+ super().__init__()
+ self.student_temp = student_temp
+ self.center_momentum = center_momentum
+ self.register_buffer("center", torch.zeros(1, out_dim))
+ self.updated = True
+ self.reduce_handle = None
+ self.len_teacher_output = None
+ self.async_batch_center = None
+
+ @torch.no_grad()
+ def softmax_center_teacher(self, teacher_output, teacher_temp):
+ self.apply_center_update()
+ # teacher centering and sharpening
+ return F.softmax((teacher_output - self.center) / teacher_temp, dim=-1)
+
+ @torch.no_grad()
+ def sinkhorn_knopp_teacher(self, teacher_output, teacher_temp, n_iterations=3):
+ teacher_output = teacher_output.float()
+ world_size = dist.get_world_size() if dist.is_initialized() else 1
+ Q = torch.exp(teacher_output / teacher_temp).t() # Q is K-by-B for consistency with notations from our paper
+ B = Q.shape[1] * world_size # number of samples to assign
+ K = Q.shape[0] # how many prototypes
+
+ # make the matrix sums to 1
+ sum_Q = torch.sum(Q)
+ if dist.is_initialized():
+ dist.all_reduce(sum_Q)
+ Q /= sum_Q
+
+ for it in range(n_iterations):
+ # normalize each row: total weight per prototype must be 1/K
+ sum_of_rows = torch.sum(Q, dim=1, keepdim=True)
+ if dist.is_initialized():
+ dist.all_reduce(sum_of_rows)
+ Q /= sum_of_rows
+ Q /= K
+
+ # normalize each column: total weight per sample must be 1/B
+ Q /= torch.sum(Q, dim=0, keepdim=True)
+ Q /= B
+
+ Q *= B # the colomns must sum to 1 so that Q is an assignment
+ return Q.t()
+
+ def forward(self, student_output_list, teacher_out_softmaxed_centered_list):
+ """
+ Cross-entropy between softmax outputs of the teacher and student networks.
+ """
+ # TODO: Use cross_entropy_distribution here
+ total_loss = 0
+ for s in student_output_list:
+ lsm = F.log_softmax(s / self.student_temp, dim=-1)
+ for t in teacher_out_softmaxed_centered_list:
+ loss = torch.sum(t * lsm, dim=-1)
+ total_loss -= loss.mean()
+ return total_loss
+
+ @torch.no_grad()
+ def update_center(self, teacher_output):
+ self.reduce_center_update(teacher_output)
+
+ @torch.no_grad()
+ def reduce_center_update(self, teacher_output):
+ self.updated = False
+ self.len_teacher_output = len(teacher_output)
+ self.async_batch_center = torch.sum(teacher_output, dim=0, keepdim=True)
+ if dist.is_initialized():
+ self.reduce_handle = dist.all_reduce(self.async_batch_center, async_op=True)
+
+ @torch.no_grad()
+ def apply_center_update(self):
+ if self.updated is False:
+ world_size = dist.get_world_size() if dist.is_initialized() else 1
+
+ if self.reduce_handle is not None:
+ self.reduce_handle.wait()
+ _t = self.async_batch_center / (self.len_teacher_output * world_size)
+
+ self.center = self.center * self.center_momentum + _t * (1 - self.center_momentum)
+
+ self.updated = True
diff --git a/dinov2/dinov2/loss/ibot_patch_loss.py b/dinov2/dinov2/loss/ibot_patch_loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..135eb61bfc6fe95eb185645a5eab8ea7ddb702a8
--- /dev/null
+++ b/dinov2/dinov2/loss/ibot_patch_loss.py
@@ -0,0 +1,152 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+import torch.distributed as dist
+import torch.nn.functional as F
+from torch import nn
+
+import logging
+
+
+logger = logging.getLogger("dinov2")
+
+
+try:
+ from xformers.ops import cross_entropy
+
+ def lossfunc(t, s, temp):
+ s = s.float()
+ t = t.float()
+ if s.ndim == 2:
+ return -cross_entropy(s.unsqueeze(0), t.unsqueeze(0), temp, bw_inplace=True).squeeze(0)
+ elif s.ndim == 3:
+ return -cross_entropy(s, t, temp, bw_inplace=True)
+
+except ImportError:
+
+ def lossfunc(t, s, temp):
+ return torch.sum(t * F.log_softmax(s / temp, dim=-1), dim=-1)
+
+
+class iBOTPatchLoss(nn.Module):
+ def __init__(self, patch_out_dim, student_temp=0.1, center_momentum=0.9):
+ super().__init__()
+ self.student_temp = student_temp
+ self.center_momentum = center_momentum
+ self.register_buffer("center", torch.zeros(1, 1, patch_out_dim))
+ self.updated = True
+ self.reduce_handle = None
+ self.len_teacher_patch_tokens = None
+ self.async_batch_center = None
+
+ @torch.no_grad()
+ def softmax_center_teacher(self, teacher_patch_tokens, teacher_temp):
+ self.apply_center_update()
+ # teacher centering and sharpening
+ #
+ # WARNING:
+ # as self.center is a float32, everything gets casted to float32 afterwards
+ #
+ # teacher_patch_tokens = teacher_patch_tokens.float()
+ # return F.softmax((teacher_patch_tokens.sub_(self.center.to(teacher_patch_tokens.dtype))).mul_(1 / teacher_temp), dim=-1)
+
+ return F.softmax((teacher_patch_tokens - self.center) / teacher_temp, dim=-1)
+
+ # this is experimental, keep everything in float16 and let's see what happens:
+ # return F.softmax((teacher_patch_tokens.sub_(self.center)) / teacher_temp, dim=-1)
+
+ @torch.no_grad()
+ def sinkhorn_knopp_teacher(self, teacher_output, teacher_temp, n_masked_patches_tensor, n_iterations=3):
+ teacher_output = teacher_output.float()
+ # world_size = dist.get_world_size() if dist.is_initialized() else 1
+ Q = torch.exp(teacher_output / teacher_temp).t() # Q is K-by-B for consistency with notations from our paper
+ # B = Q.shape[1] * world_size # number of samples to assign
+ B = n_masked_patches_tensor
+ dist.all_reduce(B)
+ K = Q.shape[0] # how many prototypes
+
+ # make the matrix sums to 1
+ sum_Q = torch.sum(Q)
+ if dist.is_initialized():
+ dist.all_reduce(sum_Q)
+ Q /= sum_Q
+
+ for it in range(n_iterations):
+ # normalize each row: total weight per prototype must be 1/K
+ sum_of_rows = torch.sum(Q, dim=1, keepdim=True)
+ if dist.is_initialized():
+ dist.all_reduce(sum_of_rows)
+ Q /= sum_of_rows
+ Q /= K
+
+ # normalize each column: total weight per sample must be 1/B
+ Q /= torch.sum(Q, dim=0, keepdim=True)
+ Q /= B
+
+ Q *= B # the colomns must sum to 1 so that Q is an assignment
+ return Q.t()
+
+ def forward(self, student_patch_tokens, teacher_patch_tokens, student_masks_flat):
+ """
+ Cross-entropy between softmax outputs of the teacher and student networks.
+ student_patch_tokens: (B, N, D) tensor
+ teacher_patch_tokens: (B, N, D) tensor
+ student_masks_flat: (B, N) tensor
+ """
+ t = teacher_patch_tokens
+ s = student_patch_tokens
+ loss = torch.sum(t * F.log_softmax(s / self.student_temp, dim=-1), dim=-1)
+ loss = torch.sum(loss * student_masks_flat.float(), dim=-1) / student_masks_flat.sum(dim=-1).clamp(min=1.0)
+ return -loss.mean()
+
+ def forward_masked(
+ self,
+ student_patch_tokens_masked,
+ teacher_patch_tokens_masked,
+ student_masks_flat,
+ n_masked_patches=None,
+ masks_weight=None,
+ ):
+ t = teacher_patch_tokens_masked
+ s = student_patch_tokens_masked
+ # loss = torch.sum(t * F.log_softmax(s / self.student_temp, dim=-1), dim=-1)
+ loss = lossfunc(t, s, self.student_temp)
+ if masks_weight is None:
+ masks_weight = (
+ (1 / student_masks_flat.sum(-1).clamp(min=1.0))
+ .unsqueeze(-1)
+ .expand_as(student_masks_flat)[student_masks_flat]
+ )
+ if n_masked_patches is not None:
+ loss = loss[:n_masked_patches]
+ loss = loss * masks_weight
+ return -loss.sum() / student_masks_flat.shape[0]
+
+ @torch.no_grad()
+ def update_center(self, teacher_patch_tokens):
+ self.reduce_center_update(teacher_patch_tokens)
+
+ @torch.no_grad()
+ def reduce_center_update(self, teacher_patch_tokens):
+ self.updated = False
+ self.len_teacher_patch_tokens = len(teacher_patch_tokens)
+ self.async_batch_center = torch.sum(teacher_patch_tokens.mean(1), dim=0, keepdim=True)
+ if dist.is_initialized():
+ self.reduce_handle = dist.all_reduce(self.async_batch_center, async_op=True)
+
+ @torch.no_grad()
+ def apply_center_update(self):
+ if self.updated is False:
+ world_size = dist.get_world_size() if dist.is_initialized() else 1
+
+ if self.reduce_handle is not None:
+ self.reduce_handle.wait()
+ _t = self.async_batch_center / (self.len_teacher_patch_tokens * world_size)
+
+ self.center = self.center * self.center_momentum + _t * (1 - self.center_momentum)
+
+ self.updated = True
diff --git a/dinov2/dinov2/loss/koleo_loss.py b/dinov2/dinov2/loss/koleo_loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..e776d0426bb029cf48f25b0c94077720bc8421c4
--- /dev/null
+++ b/dinov2/dinov2/loss/koleo_loss.py
@@ -0,0 +1,49 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+# import torch.distributed as dist
+
+
+logger = logging.getLogger("dinov2")
+
+
+class KoLeoLoss(nn.Module):
+ """Kozachenko-Leonenko entropic loss regularizer from Sablayrolles et al. - 2018 - Spreading vectors for similarity search"""
+
+ def __init__(self):
+ super().__init__()
+ self.pdist = nn.PairwiseDistance(2, eps=1e-8)
+
+ def pairwise_NNs_inner(self, x):
+ """
+ Pairwise nearest neighbors for L2-normalized vectors.
+ Uses Torch rather than Faiss to remain on GPU.
+ """
+ # parwise dot products (= inverse distance)
+ dots = torch.mm(x, x.t())
+ n = x.shape[0]
+ dots.view(-1)[:: (n + 1)].fill_(-1) # Trick to fill diagonal with -1
+ # max inner prod -> min distance
+ _, I = torch.max(dots, dim=1) # noqa: E741
+ return I
+
+ def forward(self, student_output, eps=1e-8):
+ """
+ Args:
+ student_output (BxD): backbone output of student
+ """
+ with torch.cuda.amp.autocast(enabled=False):
+ student_output = F.normalize(student_output, eps=eps, p=2, dim=-1)
+ I = self.pairwise_NNs_inner(student_output) # noqa: E741
+ distances = self.pdist(student_output, student_output[I]) # BxD, BxD -> B
+ loss = -torch.log(distances + eps).mean()
+ return loss
diff --git a/dinov2/dinov2/models/__init__.py b/dinov2/dinov2/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5e5a1f3832464f898752e57e865760e9864613cb
--- /dev/null
+++ b/dinov2/dinov2/models/__init__.py
@@ -0,0 +1,41 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+
+from . import vision_transformer as vits
+
+
+logger = logging.getLogger("dinov2")
+
+
+def build_model(args, only_teacher=False, img_size=224):
+ args.arch = args.arch.removesuffix("_memeff")
+ if "vit" in args.arch:
+ vit_kwargs = dict(
+ img_size=img_size,
+ patch_size=args.patch_size,
+ init_values=args.layerscale,
+ ffn_layer=args.ffn_layer,
+ block_chunks=args.block_chunks,
+ qkv_bias=args.qkv_bias,
+ proj_bias=args.proj_bias,
+ ffn_bias=args.ffn_bias,
+ )
+ teacher = vits.__dict__[args.arch](**vit_kwargs)
+ if only_teacher:
+ return teacher, teacher.embed_dim
+ student = vits.__dict__[args.arch](
+ **vit_kwargs,
+ drop_path_rate=args.drop_path_rate,
+ drop_path_uniform=args.drop_path_uniform,
+ )
+ embed_dim = student.embed_dim
+ return student, teacher, embed_dim
+
+
+def build_model_from_cfg(cfg, only_teacher=False):
+ return build_model(cfg.student, only_teacher=only_teacher, img_size=cfg.crops.global_crops_size)
diff --git a/dinov2/dinov2/models/vision_transformer.py b/dinov2/dinov2/models/vision_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..18e159a986336af813c8f0e505b946f42cd83e47
--- /dev/null
+++ b/dinov2/dinov2/models/vision_transformer.py
@@ -0,0 +1,358 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+# References:
+# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
+# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
+
+from functools import partial
+import math
+import logging
+from typing import Sequence, Tuple, Union, Callable
+
+import torch
+import torch.nn as nn
+import torch.utils.checkpoint
+from torch.nn.init import trunc_normal_
+
+from dinov2.layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
+
+
+logger = logging.getLogger("dinov2")
+
+
+def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
+ if not depth_first and include_root:
+ fn(module=module, name=name)
+ for child_name, child_module in module.named_children():
+ child_name = ".".join((name, child_name)) if name else child_name
+ named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
+ if depth_first and include_root:
+ fn(module=module, name=name)
+ return module
+
+
+class BlockChunk(nn.ModuleList):
+ def forward(self, x):
+ for b in self:
+ x = b(x)
+ return x
+
+
+class DinoVisionTransformer(nn.Module):
+ def __init__(
+ self,
+ img_size=224,
+ patch_size=16,
+ in_chans=3,
+ embed_dim=768,
+ depth=12,
+ num_heads=12,
+ mlp_ratio=4.0,
+ qkv_bias=True,
+ ffn_bias=True,
+ proj_bias=True,
+ drop_path_rate=0.0,
+ drop_path_uniform=False,
+ init_values=None, # for layerscale: None or 0 => no layerscale
+ embed_layer=PatchEmbed,
+ act_layer=nn.GELU,
+ block_fn=Block,
+ ffn_layer="mlp",
+ block_chunks=1,
+ ):
+ """
+ Args:
+ img_size (int, tuple): input image size
+ patch_size (int, tuple): patch size
+ in_chans (int): number of input channels
+ embed_dim (int): embedding dimension
+ depth (int): depth of transformer
+ num_heads (int): number of attention heads
+ mlp_ratio (int): ratio of mlp hidden dim to embedding dim
+ qkv_bias (bool): enable bias for qkv if True
+ proj_bias (bool): enable bias for proj in attn if True
+ ffn_bias (bool): enable bias for ffn if True
+ drop_path_rate (float): stochastic depth rate
+ drop_path_uniform (bool): apply uniform drop rate across blocks
+ weight_init (str): weight init scheme
+ init_values (float): layer-scale init values
+ embed_layer (nn.Module): patch embedding layer
+ act_layer (nn.Module): MLP activation layer
+ block_fn (nn.Module): transformer block class
+ ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
+ block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
+ """
+ super().__init__()
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
+
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
+ self.num_tokens = 1
+ self.n_blocks = depth
+ self.num_heads = num_heads
+ self.patch_size = patch_size
+
+ self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
+ num_patches = self.patch_embed.num_patches
+
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
+
+ if drop_path_uniform is True:
+ dpr = [drop_path_rate] * depth
+ else:
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
+
+ if ffn_layer == "mlp":
+ logger.info("using MLP layer as FFN")
+ ffn_layer = Mlp
+ elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
+ logger.info("using SwiGLU layer as FFN")
+ ffn_layer = SwiGLUFFNFused
+ elif ffn_layer == "identity":
+ logger.info("using Identity layer as FFN")
+
+ def f(*args, **kwargs):
+ return nn.Identity()
+
+ ffn_layer = f
+ else:
+ raise NotImplementedError
+
+ blocks_list = [
+ block_fn(
+ dim=embed_dim,
+ num_heads=num_heads,
+ mlp_ratio=mlp_ratio,
+ qkv_bias=qkv_bias,
+ proj_bias=proj_bias,
+ ffn_bias=ffn_bias,
+ drop_path=dpr[i],
+ norm_layer=norm_layer,
+ act_layer=act_layer,
+ ffn_layer=ffn_layer,
+ init_values=init_values,
+ )
+ for i in range(depth)
+ ]
+ if block_chunks > 0:
+ self.chunked_blocks = True
+ chunked_blocks = []
+ chunksize = depth // block_chunks
+ for i in range(0, depth, chunksize):
+ # this is to keep the block index consistent if we chunk the block list
+ chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
+ self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
+ else:
+ self.chunked_blocks = False
+ self.blocks = nn.ModuleList(blocks_list)
+
+ self.norm = norm_layer(embed_dim)
+ self.head = nn.Identity()
+
+ self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
+
+ self.init_weights()
+
+ def init_weights(self):
+ trunc_normal_(self.pos_embed, std=0.02)
+ nn.init.normal_(self.cls_token, std=1e-6)
+ named_apply(init_weights_vit_timm, self)
+
+ def interpolate_pos_encoding(self, x, w, h):
+ previous_dtype = x.dtype
+ npatch = x.shape[1] - 1
+ N = self.pos_embed.shape[1] - 1
+ if npatch == N and w == h:
+ return self.pos_embed
+ pos_embed = self.pos_embed.float()
+ class_pos_embed = pos_embed[:, 0]
+ patch_pos_embed = pos_embed[:, 1:]
+ dim = x.shape[-1]
+ w0 = w // self.patch_size
+ h0 = h // self.patch_size
+ # we add a small number to avoid floating point error in the interpolation
+ # see discussion at https://github.com/facebookresearch/dino/issues/8
+ w0, h0 = w0 + 0.1, h0 + 0.1
+
+ patch_pos_embed = nn.functional.interpolate(
+ patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
+ scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
+ mode="bicubic",
+ )
+
+ assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
+
+ def prepare_tokens_with_masks(self, x, masks=None):
+ B, nc, w, h = x.shape
+ x = self.patch_embed(x)
+ if masks is not None:
+ x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
+
+ x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
+ x = x + self.interpolate_pos_encoding(x, w, h)
+
+ return x
+
+ def forward_features_list(self, x_list, masks_list):
+ x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
+ for blk in self.blocks:
+ x = blk(x)
+
+ all_x = x
+ output = []
+ for x, masks in zip(all_x, masks_list):
+ x_norm = self.norm(x)
+ output.append(
+ {
+ "x_norm_clstoken": x_norm[:, 0],
+ "x_norm_patchtokens": x_norm[:, 1:],
+ "x_prenorm": x,
+ "masks": masks,
+ }
+ )
+ return output
+
+ def forward_features(self, x, masks=None):
+ if isinstance(x, list):
+ return self.forward_features_list(x, masks)
+
+ x = self.prepare_tokens_with_masks(x, masks)
+
+ for blk in self.blocks:
+ x = blk(x)
+
+ x_norm = self.norm(x)
+ return {
+ "x_norm_clstoken": x_norm[:, 0],
+ "x_norm_patchtokens": x_norm[:, 1:],
+ "x_prenorm": x,
+ "masks": masks,
+ }
+
+ def _get_intermediate_layers_not_chunked(self, x, n=1):
+ x = self.prepare_tokens_with_masks(x)
+ # If n is an int, take the n last blocks. If it's a list, take them
+ output, total_block_len = [], len(self.blocks)
+ blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
+ for i, blk in enumerate(self.blocks):
+ x = blk(x)
+ if i in blocks_to_take:
+ output.append(x)
+ assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
+ return output
+
+ def _get_intermediate_layers_chunked(self, x, n=1):
+ x = self.prepare_tokens_with_masks(x)
+ output, i, total_block_len = [], 0, len(self.blocks[-1])
+ # If n is an int, take the n last blocks. If it's a list, take them
+ blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
+ for block_chunk in self.blocks:
+ for blk in block_chunk[i:]: # Passing the nn.Identity()
+ x = blk(x)
+ if i in blocks_to_take:
+ output.append(x)
+ i += 1
+ assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
+ return output
+
+ def get_intermediate_layers(
+ self,
+ x: torch.Tensor,
+ n: Union[int, Sequence] = 1, # Layers or n last layers to take
+ reshape: bool = False,
+ return_class_token: bool = False,
+ norm=True,
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
+ if self.chunked_blocks:
+ outputs = self._get_intermediate_layers_chunked(x, n)
+ else:
+ outputs = self._get_intermediate_layers_not_chunked(x, n)
+ if norm:
+ outputs = [self.norm(out) for out in outputs]
+ class_tokens = [out[:, 0] for out in outputs]
+ outputs = [out[:, 1:] for out in outputs]
+ if reshape:
+ B, _, w, h = x.shape
+ outputs = [
+ out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
+ for out in outputs
+ ]
+ if return_class_token:
+ return tuple(zip(outputs, class_tokens))
+ return tuple(outputs)
+
+ def forward(self, *args, is_training=False, **kwargs):
+ ret = self.forward_features(*args, **kwargs)
+ if is_training:
+ return ret
+ else:
+ return self.head(ret["x_norm_clstoken"])
+
+
+def init_weights_vit_timm(module: nn.Module, name: str = ""):
+ """ViT weight initialization, original timm impl (for reproducibility)"""
+ if isinstance(module, nn.Linear):
+ trunc_normal_(module.weight, std=0.02)
+ if module.bias is not None:
+ nn.init.zeros_(module.bias)
+
+
+def vit_small(patch_size=16, **kwargs):
+ model = DinoVisionTransformer(
+ patch_size=patch_size,
+ embed_dim=384,
+ depth=12,
+ num_heads=6,
+ mlp_ratio=4,
+ block_fn=partial(Block, attn_class=MemEffAttention),
+ **kwargs,
+ )
+ return model
+
+
+def vit_base(patch_size=16, **kwargs):
+ model = DinoVisionTransformer(
+ patch_size=patch_size,
+ embed_dim=768,
+ depth=12,
+ num_heads=12,
+ mlp_ratio=4,
+ block_fn=partial(Block, attn_class=MemEffAttention),
+ **kwargs,
+ )
+ return model
+
+
+def vit_large(patch_size=16, **kwargs):
+ model = DinoVisionTransformer(
+ patch_size=patch_size,
+ embed_dim=1024,
+ depth=24,
+ num_heads=16,
+ mlp_ratio=4,
+ block_fn=partial(Block, attn_class=MemEffAttention),
+ **kwargs,
+ )
+ return model
+
+
+def vit_giant2(patch_size=16, **kwargs):
+ """
+ Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
+ """
+ model = DinoVisionTransformer(
+ patch_size=patch_size,
+ embed_dim=1536,
+ depth=40,
+ num_heads=24,
+ mlp_ratio=4,
+ block_fn=partial(Block, attn_class=MemEffAttention),
+ **kwargs,
+ )
+ return model
diff --git a/dinov2/dinov2/run/__init__.py b/dinov2/dinov2/run/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..0952fcc3f57e34b3747962e9ebd6fc57aeea63fa
--- /dev/null
+++ b/dinov2/dinov2/run/__init__.py
@@ -0,0 +1,5 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/dinov2/dinov2/run/eval/knn.py b/dinov2/dinov2/run/eval/knn.py
new file mode 100644
index 0000000000000000000000000000000000000000..15d674b78b0629aa0f041c2426c894925469a0e8
--- /dev/null
+++ b/dinov2/dinov2/run/eval/knn.py
@@ -0,0 +1,60 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+import sys
+
+from dinov2.eval.knn import get_args_parser as get_knn_args_parser
+from dinov2.logging import setup_logging
+from dinov2.run.submit import get_args_parser, submit_jobs
+
+
+logger = logging.getLogger("dinov2")
+
+
+class Evaluator:
+ def __init__(self, args):
+ self.args = args
+
+ def __call__(self):
+ from dinov2.eval.knn import main as knn_main
+
+ self._setup_args()
+ knn_main(self.args)
+
+ def checkpoint(self):
+ import submitit
+
+ logger.info(f"Requeuing {self.args}")
+ empty = type(self)(self.args)
+ return submitit.helpers.DelayedSubmission(empty)
+
+ def _setup_args(self):
+ import submitit
+
+ job_env = submitit.JobEnvironment()
+ self.args.output_dir = self.args.output_dir.replace("%j", str(job_env.job_id))
+ logger.info(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
+ logger.info(f"Args: {self.args}")
+
+
+def main():
+ description = "Submitit launcher for DINOv2 k-NN evaluation"
+ knn_args_parser = get_knn_args_parser(add_help=False)
+ parents = [knn_args_parser]
+ args_parser = get_args_parser(description=description, parents=parents)
+ args = args_parser.parse_args()
+
+ setup_logging()
+
+ assert os.path.exists(args.config_file), "Configuration file does not exist!"
+ submit_jobs(Evaluator, args, name="dinov2:knn")
+ return 0
+
+
+if __name__ == "__main__":
+ sys.exit(main())
diff --git a/dinov2/dinov2/run/eval/linear.py b/dinov2/dinov2/run/eval/linear.py
new file mode 100644
index 0000000000000000000000000000000000000000..f8c264762ac6bb82a3622c74e1e683ea5c6be437
--- /dev/null
+++ b/dinov2/dinov2/run/eval/linear.py
@@ -0,0 +1,60 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+import sys
+
+from dinov2.eval.linear import get_args_parser as get_linear_args_parser
+from dinov2.logging import setup_logging
+from dinov2.run.submit import get_args_parser, submit_jobs
+
+
+logger = logging.getLogger("dinov2")
+
+
+class Evaluator:
+ def __init__(self, args):
+ self.args = args
+
+ def __call__(self):
+ from dinov2.eval.linear import main as linear_main
+
+ self._setup_args()
+ linear_main(self.args)
+
+ def checkpoint(self):
+ import submitit
+
+ logger.info(f"Requeuing {self.args}")
+ empty = type(self)(self.args)
+ return submitit.helpers.DelayedSubmission(empty)
+
+ def _setup_args(self):
+ import submitit
+
+ job_env = submitit.JobEnvironment()
+ self.args.output_dir = self.args.output_dir.replace("%j", str(job_env.job_id))
+ logger.info(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
+ logger.info(f"Args: {self.args}")
+
+
+def main():
+ description = "Submitit launcher for DINOv2 linear evaluation"
+ linear_args_parser = get_linear_args_parser(add_help=False)
+ parents = [linear_args_parser]
+ args_parser = get_args_parser(description=description, parents=parents)
+ args = args_parser.parse_args()
+
+ setup_logging()
+
+ assert os.path.exists(args.config_file), "Configuration file does not exist!"
+ submit_jobs(Evaluator, args, name="dinov2:linear")
+ return 0
+
+
+if __name__ == "__main__":
+ sys.exit(main())
diff --git a/dinov2/dinov2/run/eval/log_regression.py b/dinov2/dinov2/run/eval/log_regression.py
new file mode 100644
index 0000000000000000000000000000000000000000..9d3d5a5742792fc8d4ca3b39c15c47e8aa349bc7
--- /dev/null
+++ b/dinov2/dinov2/run/eval/log_regression.py
@@ -0,0 +1,60 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+import sys
+
+from dinov2.eval.log_regression import get_args_parser as get_log_regression_args_parser
+from dinov2.logging import setup_logging
+from dinov2.run.submit import get_args_parser, submit_jobs
+
+
+logger = logging.getLogger("dinov2")
+
+
+class Evaluator:
+ def __init__(self, args):
+ self.args = args
+
+ def __call__(self):
+ from dinov2.eval.log_regression import main as log_regression_main
+
+ self._setup_args()
+ log_regression_main(self.args)
+
+ def checkpoint(self):
+ import submitit
+
+ logger.info(f"Requeuing {self.args}")
+ empty = type(self)(self.args)
+ return submitit.helpers.DelayedSubmission(empty)
+
+ def _setup_args(self):
+ import submitit
+
+ job_env = submitit.JobEnvironment()
+ self.args.output_dir = self.args.output_dir.replace("%j", str(job_env.job_id))
+ logger.info(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
+ logger.info(f"Args: {self.args}")
+
+
+def main():
+ description = "Submitit launcher for DINOv2 logistic evaluation"
+ log_regression_args_parser = get_log_regression_args_parser(add_help=False)
+ parents = [log_regression_args_parser]
+ args_parser = get_args_parser(description=description, parents=parents)
+ args = args_parser.parse_args()
+
+ setup_logging()
+
+ assert os.path.exists(args.config_file), "Configuration file does not exist!"
+ submit_jobs(Evaluator, args, name="dinov2:logreg")
+ return 0
+
+
+if __name__ == "__main__":
+ sys.exit(main())
diff --git a/dinov2/dinov2/run/submit.py b/dinov2/dinov2/run/submit.py
new file mode 100644
index 0000000000000000000000000000000000000000..340b478ad2d3058de6026d9e0ddb75253686087f
--- /dev/null
+++ b/dinov2/dinov2/run/submit.py
@@ -0,0 +1,122 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import logging
+import os
+from pathlib import Path
+from typing import List, Optional
+
+import submitit
+
+from dinov2.utils.cluster import (
+ get_slurm_executor_parameters,
+ get_slurm_partition,
+ get_user_checkpoint_path,
+)
+
+
+logger = logging.getLogger("dinov2")
+
+
+def get_args_parser(
+ description: Optional[str] = None,
+ parents: Optional[List[argparse.ArgumentParser]] = [],
+ add_help: bool = True,
+) -> argparse.ArgumentParser:
+ slurm_partition = get_slurm_partition()
+ parser = argparse.ArgumentParser(
+ description=description,
+ parents=parents,
+ add_help=add_help,
+ )
+ parser.add_argument(
+ "--ngpus",
+ "--gpus",
+ "--gpus-per-node",
+ default=8,
+ type=int,
+ help="Number of GPUs to request on each node",
+ )
+ parser.add_argument(
+ "--nodes",
+ "--nnodes",
+ default=2,
+ type=int,
+ help="Number of nodes to request",
+ )
+ parser.add_argument(
+ "--timeout",
+ default=2800,
+ type=int,
+ help="Duration of the job",
+ )
+ parser.add_argument(
+ "--partition",
+ default=slurm_partition,
+ type=str,
+ help="Partition where to submit",
+ )
+ parser.add_argument(
+ "--use-volta32",
+ action="store_true",
+ help="Request V100-32GB GPUs",
+ )
+ parser.add_argument(
+ "--comment",
+ default="",
+ type=str,
+ help="Comment to pass to scheduler, e.g. priority message",
+ )
+ parser.add_argument(
+ "--exclude",
+ default="",
+ type=str,
+ help="Nodes to exclude",
+ )
+ return parser
+
+
+def get_shared_folder() -> Path:
+ user_checkpoint_path = get_user_checkpoint_path()
+ if user_checkpoint_path is None:
+ raise RuntimeError("Path to user checkpoint cannot be determined")
+ path = user_checkpoint_path / "experiments"
+ path.mkdir(exist_ok=True)
+ return path
+
+
+def submit_jobs(task_class, args, name: str):
+ if not args.output_dir:
+ args.output_dir = str(get_shared_folder() / "%j")
+
+ Path(args.output_dir).mkdir(parents=True, exist_ok=True)
+ executor = submitit.AutoExecutor(folder=args.output_dir, slurm_max_num_timeout=30)
+
+ kwargs = {}
+ if args.use_volta32:
+ kwargs["slurm_constraint"] = "volta32gb"
+ if args.comment:
+ kwargs["slurm_comment"] = args.comment
+ if args.exclude:
+ kwargs["slurm_exclude"] = args.exclude
+
+ executor_params = get_slurm_executor_parameters(
+ nodes=args.nodes,
+ num_gpus_per_node=args.ngpus,
+ timeout_min=args.timeout, # max is 60 * 72
+ slurm_signal_delay_s=120,
+ slurm_partition=args.partition,
+ **kwargs,
+ )
+ executor.update_parameters(name=name, **executor_params)
+
+ task = task_class(args)
+ job = executor.submit(task)
+
+ logger.info(f"Submitted job_id: {job.job_id}")
+ str_output_dir = os.path.abspath(args.output_dir).replace("%j", str(job.job_id))
+ logger.info(f"Logs and checkpoints will be saved at: {str_output_dir}")
diff --git a/dinov2/dinov2/run/train/train.py b/dinov2/dinov2/run/train/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..24716f2a314820a4cc15289fe0cb13ad52cf343c
--- /dev/null
+++ b/dinov2/dinov2/run/train/train.py
@@ -0,0 +1,60 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+import sys
+
+from dinov2.logging import setup_logging
+from dinov2.train import get_args_parser as get_train_args_parser
+from dinov2.run.submit import get_args_parser, submit_jobs
+
+
+logger = logging.getLogger("dinov2")
+
+
+class Trainer(object):
+ def __init__(self, args):
+ self.args = args
+
+ def __call__(self):
+ from dinov2.train import main as train_main
+
+ self._setup_args()
+ train_main(self.args)
+
+ def checkpoint(self):
+ import submitit
+
+ logger.info(f"Requeuing {self.args}")
+ empty = type(self)(self.args)
+ return submitit.helpers.DelayedSubmission(empty)
+
+ def _setup_args(self):
+ import submitit
+
+ job_env = submitit.JobEnvironment()
+ self.args.output_dir = self.args.output_dir.replace("%j", str(job_env.job_id))
+ logger.info(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
+ logger.info(f"Args: {self.args}")
+
+
+def main():
+ description = "Submitit launcher for DINOv2 training"
+ train_args_parser = get_train_args_parser(add_help=False)
+ parents = [train_args_parser]
+ args_parser = get_args_parser(description=description, parents=parents)
+ args = args_parser.parse_args()
+
+ setup_logging()
+
+ assert os.path.exists(args.config_file), "Configuration file does not exist!"
+ submit_jobs(Trainer, args, name="dinov2:train")
+ return 0
+
+
+if __name__ == "__main__":
+ sys.exit(main())
diff --git a/dinov2/dinov2/train/__init__.py b/dinov2/dinov2/train/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..b0b66d17aa547ed5560e75a03f5c1587da2d4fd7
--- /dev/null
+++ b/dinov2/dinov2/train/__init__.py
@@ -0,0 +1,8 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from .train import get_args_parser, main
+from .ssl_meta_arch import SSLMetaArch
diff --git a/dinov2/dinov2/train/ssl_meta_arch.py b/dinov2/dinov2/train/ssl_meta_arch.py
new file mode 100644
index 0000000000000000000000000000000000000000..86d0c2413f9abc61953d0e12b43a5a843d97d244
--- /dev/null
+++ b/dinov2/dinov2/train/ssl_meta_arch.py
@@ -0,0 +1,403 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from functools import partial
+import logging
+
+import torch
+from torch import nn
+
+from dinov2.loss import DINOLoss, iBOTPatchLoss, KoLeoLoss
+from dinov2.models import build_model_from_cfg
+from dinov2.layers import DINOHead
+from dinov2.utils.utils import has_batchnorms
+from dinov2.utils.param_groups import get_params_groups_with_decay, fuse_params_groups
+from dinov2.fsdp import get_fsdp_wrapper, ShardedGradScaler, get_fsdp_modules, reshard_fsdp_model
+
+from dinov2.models.vision_transformer import BlockChunk
+
+try:
+ from xformers.ops import fmha
+
+ XFORMERS_AVAILABLE = True
+except ImportError:
+ XFORMERS_AVAILABLE = False
+assert XFORMERS_AVAILABLE, "xFormers is required for DINOv2 training"
+
+
+logger = logging.getLogger("dinov2")
+
+
+class SSLMetaArch(nn.Module):
+ def __init__(self, cfg):
+ super().__init__()
+ self.cfg = cfg
+ self.fp16_scaler = ShardedGradScaler() if cfg.compute_precision.grad_scaler else None
+
+ student_model_dict = dict()
+ teacher_model_dict = dict()
+
+ student_backbone, teacher_backbone, embed_dim = build_model_from_cfg(cfg)
+ student_model_dict["backbone"] = student_backbone
+ teacher_model_dict["backbone"] = teacher_backbone
+ logger.info(f"OPTIONS -- architecture : embed_dim: {embed_dim}")
+
+ if cfg.student.pretrained_weights:
+ chkpt = torch.load(cfg.student.pretrained_weights)
+ logger.info(f"OPTIONS -- pretrained weights: loading from {cfg.student.pretrained_weights}")
+ student_backbone.load_state_dict(chkpt["model"], strict=False)
+
+ self.embed_dim = embed_dim
+ self.dino_out_dim = cfg.dino.head_n_prototypes
+
+ self.do_dino = cfg.dino.loss_weight > 0
+ self.do_koleo = cfg.dino.koleo_loss_weight > 0
+ self.do_ibot = cfg.ibot.loss_weight > 0
+ self.ibot_separate_head = cfg.ibot.separate_head
+
+ logger.info("OPTIONS -- DINO")
+ if self.do_dino:
+ logger.info(f"OPTIONS -- DINO -- loss_weight: {cfg.dino.loss_weight}")
+ logger.info(f"OPTIONS -- DINO -- head_n_prototypes: {cfg.dino.head_n_prototypes}")
+ logger.info(f"OPTIONS -- DINO -- head_bottleneck_dim: {cfg.dino.head_bottleneck_dim}")
+ logger.info(f"OPTIONS -- DINO -- head_hidden_dim: {cfg.dino.head_hidden_dim}")
+ self.dino_loss_weight = cfg.dino.loss_weight
+ dino_head = partial(
+ DINOHead,
+ in_dim=embed_dim,
+ out_dim=cfg.dino.head_n_prototypes,
+ hidden_dim=cfg.dino.head_hidden_dim,
+ bottleneck_dim=cfg.dino.head_bottleneck_dim,
+ nlayers=cfg.dino.head_nlayers,
+ )
+ self.dino_loss = DINOLoss(self.dino_out_dim)
+ if self.do_koleo:
+ logger.info("OPTIONS -- DINO -- applying KOLEO regularization")
+ self.koleo_loss = KoLeoLoss()
+
+ else:
+ logger.info("OPTIONS -- DINO -- not using DINO")
+
+ if self.do_dino or self.do_ibot:
+ student_model_dict["dino_head"] = dino_head()
+ teacher_model_dict["dino_head"] = dino_head()
+
+ logger.info("OPTIONS -- IBOT")
+ logger.info(f"OPTIONS -- IBOT -- loss_weight: {cfg.ibot.loss_weight}")
+ logger.info(f"OPTIONS -- IBOT masking -- ibot_mask_ratio_tuple: {cfg.ibot.mask_ratio_min_max}")
+ logger.info(f"OPTIONS -- IBOT masking -- ibot_mask_sample_probability: {cfg.ibot.mask_sample_probability}")
+ if self.do_ibot:
+ self.ibot_loss_weight = cfg.ibot.loss_weight
+ assert max(cfg.ibot.mask_ratio_min_max) > 0, "please provide a positive mask ratio tuple for ibot"
+ assert cfg.ibot.mask_sample_probability > 0, "please provide a positive mask probability for ibot"
+ self.ibot_out_dim = cfg.ibot.head_n_prototypes if self.ibot_separate_head else cfg.dino.head_n_prototypes
+ self.ibot_patch_loss = iBOTPatchLoss(self.ibot_out_dim)
+ if self.ibot_separate_head:
+ logger.info(f"OPTIONS -- IBOT -- loss_weight: {cfg.ibot.loss_weight}")
+ logger.info(f"OPTIONS -- IBOT -- head_n_prototypes: {cfg.ibot.head_n_prototypes}")
+ logger.info(f"OPTIONS -- IBOT -- head_bottleneck_dim: {cfg.ibot.head_bottleneck_dim}")
+ logger.info(f"OPTIONS -- IBOT -- head_hidden_dim: {cfg.ibot.head_hidden_dim}")
+ ibot_head = partial(
+ DINOHead,
+ in_dim=embed_dim,
+ out_dim=cfg.ibot.head_n_prototypes,
+ hidden_dim=cfg.ibot.head_hidden_dim,
+ bottleneck_dim=cfg.ibot.head_bottleneck_dim,
+ nlayers=cfg.ibot.head_nlayers,
+ )
+ student_model_dict["ibot_head"] = ibot_head()
+ teacher_model_dict["ibot_head"] = ibot_head()
+ else:
+ logger.info("OPTIONS -- IBOT -- head shared with DINO")
+
+ self.need_to_synchronize_fsdp_streams = True
+
+ self.student = nn.ModuleDict(student_model_dict)
+ self.teacher = nn.ModuleDict(teacher_model_dict)
+
+ # there is no backpropagation through the teacher, so no need for gradients
+ for p in self.teacher.parameters():
+ p.requires_grad = False
+ logger.info(f"Student and Teacher are built: they are both {cfg.student.arch} network.")
+
+ def forward(self, inputs):
+ raise NotImplementedError
+
+ def backprop_loss(self, loss):
+ if self.fp16_scaler is not None:
+ self.fp16_scaler.scale(loss).backward()
+ else:
+ loss.backward()
+
+ def forward_backward(self, images, teacher_temp):
+ n_global_crops = 2
+ assert n_global_crops == 2
+ n_local_crops = self.cfg.crops.local_crops_number
+
+ global_crops = images["collated_global_crops"].cuda(non_blocking=True)
+ local_crops = images["collated_local_crops"].cuda(non_blocking=True)
+
+ masks = images["collated_masks"].cuda(non_blocking=True)
+ mask_indices_list = images["mask_indices_list"].cuda(non_blocking=True)
+ n_masked_patches_tensor = images["n_masked_patches"].cuda(non_blocking=True)
+ n_masked_patches = mask_indices_list.shape[0]
+ upperbound = images["upperbound"]
+ masks_weight = images["masks_weight"].cuda(non_blocking=True)
+
+ n_local_crops_loss_terms = max(n_local_crops * n_global_crops, 1)
+ n_global_crops_loss_terms = (n_global_crops - 1) * n_global_crops
+
+ do_dino = self.do_dino
+ do_ibot = self.do_ibot
+
+ # loss scales
+ ibot_loss_scale = 1.0 / n_global_crops
+
+ # teacher output
+ @torch.no_grad()
+ def get_teacher_output():
+ x, n_global_crops_teacher = global_crops, n_global_crops
+ teacher_backbone_output_dict = self.teacher.backbone(x, is_training=True)
+ teacher_cls_tokens = teacher_backbone_output_dict["x_norm_clstoken"]
+ teacher_cls_tokens = teacher_cls_tokens.chunk(n_global_crops_teacher)
+ # watch out: these are chunked and cat'd in reverse so A is matched to B in the global crops dino loss
+ teacher_cls_tokens = torch.cat((teacher_cls_tokens[1], teacher_cls_tokens[0]))
+ ibot_teacher_patch_tokens = teacher_backbone_output_dict["x_norm_patchtokens"]
+ _dim = ibot_teacher_patch_tokens.shape[-1]
+ n_cls_tokens = teacher_cls_tokens.shape[0]
+
+ if do_ibot and not self.ibot_separate_head:
+ buffer_tensor_teacher = ibot_teacher_patch_tokens.new_zeros(upperbound + n_cls_tokens, _dim)
+ buffer_tensor_teacher[:n_cls_tokens].copy_(teacher_cls_tokens)
+ torch.index_select(
+ ibot_teacher_patch_tokens.flatten(0, 1),
+ dim=0,
+ index=mask_indices_list,
+ out=buffer_tensor_teacher[n_cls_tokens : n_cls_tokens + n_masked_patches],
+ )
+ tokens_after_head = self.teacher.dino_head(buffer_tensor_teacher)
+ teacher_cls_tokens_after_head = tokens_after_head[:n_cls_tokens]
+ masked_teacher_patch_tokens_after_head = tokens_after_head[
+ n_cls_tokens : n_cls_tokens + n_masked_patches
+ ]
+ elif do_ibot and self.ibot_separate_head:
+ buffer_tensor_teacher = ibot_teacher_patch_tokens.new_zeros(upperbound, _dim)
+ torch.index_select(
+ ibot_teacher_patch_tokens.flatten(0, 1),
+ dim=0,
+ index=mask_indices_list,
+ out=buffer_tensor_teacher[:n_masked_patches],
+ )
+ teacher_cls_tokens_after_head = self.teacher.dino_head(teacher_cls_tokens)
+ masked_teacher_patch_tokens_after_head = self.teacher.ibot_head(buffer_tensor_teacher)[
+ :n_masked_patches
+ ]
+ else:
+ teacher_cls_tokens_after_head = self.teacher.dino_head(teacher_cls_tokens)
+ masked_teacher_ibot_softmaxed_centered = None
+
+ if self.cfg.train.centering == "centering":
+ teacher_dino_softmaxed_centered_list = self.dino_loss.softmax_center_teacher(
+ teacher_cls_tokens_after_head, teacher_temp=teacher_temp
+ ).view(n_global_crops_teacher, -1, *teacher_cls_tokens_after_head.shape[1:])
+ self.dino_loss.update_center(teacher_cls_tokens_after_head)
+ if do_ibot:
+ masked_teacher_patch_tokens_after_head = masked_teacher_patch_tokens_after_head.unsqueeze(0)
+ masked_teacher_ibot_softmaxed_centered = self.ibot_patch_loss.softmax_center_teacher(
+ masked_teacher_patch_tokens_after_head[:, :n_masked_patches], teacher_temp=teacher_temp
+ )
+ masked_teacher_ibot_softmaxed_centered = masked_teacher_ibot_softmaxed_centered.squeeze(0)
+ self.ibot_patch_loss.update_center(masked_teacher_patch_tokens_after_head[:n_masked_patches])
+
+ elif self.cfg.train.centering == "sinkhorn_knopp":
+ teacher_dino_softmaxed_centered_list = self.dino_loss.sinkhorn_knopp_teacher(
+ teacher_cls_tokens_after_head, teacher_temp=teacher_temp
+ ).view(n_global_crops_teacher, -1, *teacher_cls_tokens_after_head.shape[1:])
+
+ if do_ibot:
+ masked_teacher_ibot_softmaxed_centered = self.ibot_patch_loss.sinkhorn_knopp_teacher(
+ masked_teacher_patch_tokens_after_head,
+ teacher_temp=teacher_temp,
+ n_masked_patches_tensor=n_masked_patches_tensor,
+ )
+
+ else:
+ raise NotImplementedError
+
+ return teacher_dino_softmaxed_centered_list, masked_teacher_ibot_softmaxed_centered
+
+ teacher_dino_softmaxed_centered_list, masked_teacher_ibot_softmaxed_centered = get_teacher_output()
+ reshard_fsdp_model(self.teacher)
+
+ loss_dict = {}
+
+ loss_accumulator = 0 # for backprop
+ student_global_backbone_output_dict, student_local_backbone_output_dict = self.student.backbone(
+ [global_crops, local_crops], masks=[masks, None], is_training=True
+ )
+
+ inputs_for_student_head_list = []
+
+ # 1a: local crops cls tokens
+ student_local_cls_tokens = student_local_backbone_output_dict["x_norm_clstoken"]
+ inputs_for_student_head_list.append(student_local_cls_tokens.unsqueeze(0))
+
+ # 1b: global crops cls tokens
+ student_global_cls_tokens = student_global_backbone_output_dict["x_norm_clstoken"]
+ inputs_for_student_head_list.append(student_global_cls_tokens.unsqueeze(0))
+
+ # 1c: global crops patch tokens
+ if do_ibot:
+ _dim = student_global_backbone_output_dict["x_norm_clstoken"].shape[-1]
+ ibot_student_patch_tokens = student_global_backbone_output_dict["x_norm_patchtokens"]
+ buffer_tensor_patch_tokens = ibot_student_patch_tokens.new_zeros(upperbound, _dim)
+ buffer_tensor_patch_tokens[:n_masked_patches].copy_(
+ torch.index_select(ibot_student_patch_tokens.flatten(0, 1), dim=0, index=mask_indices_list)
+ )
+ if not self.ibot_separate_head:
+ inputs_for_student_head_list.append(buffer_tensor_patch_tokens.unsqueeze(0))
+ else:
+ student_global_masked_patch_tokens_after_head = self.student.ibot_head(buffer_tensor_patch_tokens)[
+ :n_masked_patches
+ ]
+
+ # 2: run
+ _attn_bias, cat_inputs = fmha.BlockDiagonalMask.from_tensor_list(inputs_for_student_head_list)
+ outputs_list = _attn_bias.split(self.student.dino_head(cat_inputs))
+
+ # 3a: local crops cls tokens
+ student_local_cls_tokens_after_head = outputs_list.pop(0).squeeze(0)
+
+ # 3b: global crops cls tokens
+ student_global_cls_tokens_after_head = outputs_list.pop(0).squeeze(0)
+
+ # 3c: global crops patch tokens
+ if do_ibot and not self.ibot_separate_head:
+ student_global_masked_patch_tokens_after_head = outputs_list.pop(0).squeeze(0)[:n_masked_patches]
+
+ if n_local_crops > 0:
+ dino_local_crops_loss = self.dino_loss(
+ student_output_list=student_local_cls_tokens_after_head.chunk(n_local_crops),
+ teacher_out_softmaxed_centered_list=teacher_dino_softmaxed_centered_list,
+ ) / (n_global_crops_loss_terms + n_local_crops_loss_terms)
+
+ # store for display
+ loss_dict["dino_local_crops_loss"] = dino_local_crops_loss
+
+ # accumulate loss
+ loss_accumulator += self.dino_loss_weight * dino_local_crops_loss
+
+ # process global crops
+ loss_scales = 2 # this is here since we process global crops together
+
+ if do_dino:
+ # compute loss
+ dino_global_crops_loss = (
+ self.dino_loss(
+ student_output_list=[student_global_cls_tokens_after_head],
+ teacher_out_softmaxed_centered_list=[
+ teacher_dino_softmaxed_centered_list.flatten(0, 1)
+ ], # these were chunked and stacked in reverse so A is matched to B
+ )
+ * loss_scales
+ / (n_global_crops_loss_terms + n_local_crops_loss_terms)
+ )
+
+ loss_dict["dino_global_crops_loss"] = dino_global_crops_loss
+
+ # accumulate loss
+ loss_accumulator += self.dino_loss_weight * dino_global_crops_loss
+
+ student_cls_tokens = student_global_cls_tokens
+
+ if self.do_koleo:
+ koleo_loss = self.cfg.dino.koleo_loss_weight * sum(
+ self.koleo_loss(p) for p in student_cls_tokens.chunk(2)
+ ) # we don't apply koleo loss between cls tokens of a same image
+ loss_accumulator += koleo_loss
+ loss_dict["koleo_loss"] = (
+ koleo_loss / loss_scales
+ ) # this is to display the same losses as before but we can remove eventually
+
+ if do_ibot:
+ # compute loss
+ ibot_patch_loss = (
+ self.ibot_patch_loss.forward_masked(
+ student_global_masked_patch_tokens_after_head,
+ masked_teacher_ibot_softmaxed_centered,
+ student_masks_flat=masks,
+ n_masked_patches=n_masked_patches,
+ masks_weight=masks_weight,
+ )
+ * loss_scales
+ * ibot_loss_scale
+ )
+
+ # store for display
+ loss_dict["ibot_loss"] = ibot_patch_loss / 2
+
+ # accumulate loss
+ loss_accumulator += self.ibot_loss_weight * ibot_patch_loss
+
+ self.backprop_loss(loss_accumulator)
+
+ self.fsdp_synchronize_streams()
+
+ return loss_dict
+
+ def fsdp_synchronize_streams(self):
+ if self.need_to_synchronize_fsdp_streams:
+ torch.cuda.synchronize()
+ self.student.dino_head._streams = (
+ self.teacher.dino_head._streams
+ ) = self.student.backbone._streams = self.teacher.backbone._streams
+ self.need_to_synchronize_fsdp_streams = False
+
+ def update_teacher(self, m):
+ student_param_list = []
+ teacher_param_list = []
+ with torch.no_grad():
+ for k in self.student.keys():
+ for ms, mt in zip(get_fsdp_modules(self.student[k]), get_fsdp_modules(self.teacher[k])):
+ student_param_list += ms.params
+ teacher_param_list += mt.params
+ torch._foreach_mul_(teacher_param_list, m)
+ torch._foreach_add_(teacher_param_list, student_param_list, alpha=1 - m)
+
+ def train(self):
+ super().train()
+ self.teacher.eval()
+
+ def get_maybe_fused_params_for_submodel(self, m):
+ params_groups = get_params_groups_with_decay(
+ model=m,
+ lr_decay_rate=self.cfg.optim.layerwise_decay,
+ patch_embed_lr_mult=self.cfg.optim.patch_embed_lr_mult,
+ )
+ fused_params_groups = fuse_params_groups(params_groups)
+ logger.info("fusing param groups")
+
+ for g in fused_params_groups:
+ g["foreach"] = True
+ return fused_params_groups
+
+ def get_params_groups(self):
+ all_params_groups = []
+ for m in self.student.values():
+ all_params_groups += self.get_maybe_fused_params_for_submodel(m)
+ return all_params_groups
+
+ def prepare_for_distributed_training(self):
+ logger.info("DISTRIBUTED FSDP -- preparing model for distributed training")
+ if has_batchnorms(self.student):
+ raise NotImplementedError
+ # below will synchronize all student subnetworks across gpus:
+ for k, v in self.student.items():
+ self.teacher[k].load_state_dict(self.student[k].state_dict())
+ student_model_cfg = self.cfg.compute_precision.student[k]
+ self.student[k] = get_fsdp_wrapper(student_model_cfg, modules_to_wrap={BlockChunk})(self.student[k])
+ teacher_model_cfg = self.cfg.compute_precision.teacher[k]
+ self.teacher[k] = get_fsdp_wrapper(teacher_model_cfg, modules_to_wrap={BlockChunk})(self.teacher[k])
diff --git a/dinov2/dinov2/train/train.py b/dinov2/dinov2/train/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..5279b9c4317e56b5c0a9c39f7bf9bf56b04a1f8b
--- /dev/null
+++ b/dinov2/dinov2/train/train.py
@@ -0,0 +1,319 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import logging
+import math
+import os
+from functools import partial
+
+from fvcore.common.checkpoint import PeriodicCheckpointer
+import torch
+
+from dinov2.data import SamplerType, make_data_loader, make_dataset
+from dinov2.data import collate_data_and_cast, DataAugmentationDINO, MaskingGenerator
+import dinov2.distributed as distributed
+from dinov2.fsdp import FSDPCheckpointer
+from dinov2.logging import MetricLogger
+from dinov2.utils.config import setup
+from dinov2.utils.utils import CosineScheduler
+
+from dinov2.train.ssl_meta_arch import SSLMetaArch
+
+
+torch.backends.cuda.matmul.allow_tf32 = True # PyTorch 1.12 sets this to False by default
+logger = logging.getLogger("dinov2")
+
+
+def get_args_parser(add_help: bool = True):
+ parser = argparse.ArgumentParser("DINOv2 training", add_help=add_help)
+ parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
+ parser.add_argument(
+ "--no-resume",
+ action="store_true",
+ help="Whether to not attempt to resume from the checkpoint directory. ",
+ )
+ parser.add_argument("--eval-only", action="store_true", help="perform evaluation only")
+ parser.add_argument("--eval", type=str, default="", help="Eval type to perform")
+ parser.add_argument(
+ "opts",
+ help="""
+Modify config options at the end of the command. For Yacs configs, use
+space-separated "PATH.KEY VALUE" pairs.
+For python-based LazyConfig, use "path.key=value".
+ """.strip(),
+ default=None,
+ nargs=argparse.REMAINDER,
+ )
+ parser.add_argument(
+ "--output-dir",
+ "--output_dir",
+ default="",
+ type=str,
+ help="Output directory to save logs and checkpoints",
+ )
+
+ return parser
+
+
+def build_optimizer(cfg, params_groups):
+ return torch.optim.AdamW(params_groups, betas=(cfg.optim.adamw_beta1, cfg.optim.adamw_beta2))
+
+
+def build_schedulers(cfg):
+ OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH
+ lr = dict(
+ base_value=cfg.optim["lr"],
+ final_value=cfg.optim["min_lr"],
+ total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
+ warmup_iters=cfg.optim["warmup_epochs"] * OFFICIAL_EPOCH_LENGTH,
+ start_warmup_value=0,
+ )
+ wd = dict(
+ base_value=cfg.optim["weight_decay"],
+ final_value=cfg.optim["weight_decay_end"],
+ total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
+ )
+ momentum = dict(
+ base_value=cfg.teacher["momentum_teacher"],
+ final_value=cfg.teacher["final_momentum_teacher"],
+ total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
+ )
+ teacher_temp = dict(
+ base_value=cfg.teacher["teacher_temp"],
+ final_value=cfg.teacher["teacher_temp"],
+ total_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH,
+ warmup_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH,
+ start_warmup_value=cfg.teacher["warmup_teacher_temp"],
+ )
+
+ lr_schedule = CosineScheduler(**lr)
+ wd_schedule = CosineScheduler(**wd)
+ momentum_schedule = CosineScheduler(**momentum)
+ teacher_temp_schedule = CosineScheduler(**teacher_temp)
+ last_layer_lr_schedule = CosineScheduler(**lr)
+
+ last_layer_lr_schedule.schedule[
+ : cfg.optim["freeze_last_layer_epochs"] * OFFICIAL_EPOCH_LENGTH
+ ] = 0 # mimicking the original schedules
+
+ logger.info("Schedulers ready.")
+
+ return (
+ lr_schedule,
+ wd_schedule,
+ momentum_schedule,
+ teacher_temp_schedule,
+ last_layer_lr_schedule,
+ )
+
+
+def apply_optim_scheduler(optimizer, lr, wd, last_layer_lr):
+ for param_group in optimizer.param_groups:
+ is_last_layer = param_group["is_last_layer"]
+ lr_multiplier = param_group["lr_multiplier"]
+ wd_multiplier = param_group["wd_multiplier"]
+ param_group["weight_decay"] = wd * wd_multiplier
+ param_group["lr"] = (last_layer_lr if is_last_layer else lr) * lr_multiplier
+
+
+def do_test(cfg, model, iteration):
+ new_state_dict = model.teacher.state_dict()
+
+ if distributed.is_main_process():
+ iterstring = str(iteration)
+ eval_dir = os.path.join(cfg.train.output_dir, "eval", iterstring)
+ os.makedirs(eval_dir, exist_ok=True)
+ # save teacher checkpoint
+ teacher_ckp_path = os.path.join(eval_dir, "teacher_checkpoint.pth")
+ torch.save({"teacher": new_state_dict}, teacher_ckp_path)
+
+
+def do_train(cfg, model, resume=False):
+ model.train()
+ inputs_dtype = torch.half
+ fp16_scaler = model.fp16_scaler # for mixed precision training
+
+ # setup optimizer
+
+ optimizer = build_optimizer(cfg, model.get_params_groups())
+ (
+ lr_schedule,
+ wd_schedule,
+ momentum_schedule,
+ teacher_temp_schedule,
+ last_layer_lr_schedule,
+ ) = build_schedulers(cfg)
+
+ # checkpointer
+ checkpointer = FSDPCheckpointer(model, cfg.train.output_dir, optimizer=optimizer, save_to_disk=True)
+
+ start_iter = checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1
+
+ OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH
+ max_iter = cfg.optim.epochs * OFFICIAL_EPOCH_LENGTH
+
+ periodic_checkpointer = PeriodicCheckpointer(
+ checkpointer,
+ period=3 * OFFICIAL_EPOCH_LENGTH,
+ max_iter=max_iter,
+ max_to_keep=3,
+ )
+
+ # setup data preprocessing
+
+ img_size = cfg.crops.global_crops_size
+ patch_size = cfg.student.patch_size
+ n_tokens = (img_size // patch_size) ** 2
+ mask_generator = MaskingGenerator(
+ input_size=(img_size // patch_size, img_size // patch_size),
+ max_num_patches=0.5 * img_size // patch_size * img_size // patch_size,
+ )
+
+ data_transform = DataAugmentationDINO(
+ cfg.crops.global_crops_scale,
+ cfg.crops.local_crops_scale,
+ cfg.crops.local_crops_number,
+ global_crops_size=cfg.crops.global_crops_size,
+ local_crops_size=cfg.crops.local_crops_size,
+ )
+
+ collate_fn = partial(
+ collate_data_and_cast,
+ mask_ratio_tuple=cfg.ibot.mask_ratio_min_max,
+ mask_probability=cfg.ibot.mask_sample_probability,
+ n_tokens=n_tokens,
+ mask_generator=mask_generator,
+ dtype=inputs_dtype,
+ )
+
+ # setup data loader
+
+ dataset = make_dataset(
+ dataset_str=cfg.train.dataset_path,
+ transform=data_transform,
+ target_transform=lambda _: (),
+ )
+ # sampler_type = SamplerType.INFINITE
+ sampler_type = SamplerType.SHARDED_INFINITE
+ data_loader = make_data_loader(
+ dataset=dataset,
+ batch_size=cfg.train.batch_size_per_gpu,
+ num_workers=cfg.train.num_workers,
+ shuffle=True,
+ seed=start_iter, # TODO: Fix this -- cfg.train.seed
+ sampler_type=sampler_type,
+ sampler_advance=0, # TODO(qas): fix this -- start_iter * cfg.train.batch_size_per_gpu,
+ drop_last=True,
+ collate_fn=collate_fn,
+ )
+
+ # training loop
+
+ iteration = start_iter
+
+ logger.info("Starting training from iteration {}".format(start_iter))
+ metrics_file = os.path.join(cfg.train.output_dir, "training_metrics.json")
+ metric_logger = MetricLogger(delimiter=" ", output_file=metrics_file)
+ header = "Training"
+
+ for data in metric_logger.log_every(
+ data_loader,
+ 10,
+ header,
+ max_iter,
+ start_iter,
+ ):
+ current_batch_size = data["collated_global_crops"].shape[0] / 2
+ if iteration > max_iter:
+ return
+
+ # apply schedules
+
+ lr = lr_schedule[iteration]
+ wd = wd_schedule[iteration]
+ mom = momentum_schedule[iteration]
+ teacher_temp = teacher_temp_schedule[iteration]
+ last_layer_lr = last_layer_lr_schedule[iteration]
+ apply_optim_scheduler(optimizer, lr, wd, last_layer_lr)
+
+ # compute losses
+
+ optimizer.zero_grad(set_to_none=True)
+ loss_dict = model.forward_backward(data, teacher_temp=teacher_temp)
+
+ # clip gradients
+
+ if fp16_scaler is not None:
+ if cfg.optim.clip_grad:
+ fp16_scaler.unscale_(optimizer)
+ for v in model.student.values():
+ v.clip_grad_norm_(cfg.optim.clip_grad)
+ fp16_scaler.step(optimizer)
+ fp16_scaler.update()
+ else:
+ if cfg.optim.clip_grad:
+ for v in model.student.values():
+ v.clip_grad_norm_(cfg.optim.clip_grad)
+ optimizer.step()
+
+ # perform teacher EMA update
+
+ model.update_teacher(mom)
+
+ # logging
+
+ if distributed.get_global_size() > 1:
+ for v in loss_dict.values():
+ torch.distributed.all_reduce(v)
+ loss_dict_reduced = {k: v.item() / distributed.get_global_size() for k, v in loss_dict.items()}
+
+ if math.isnan(sum(loss_dict_reduced.values())):
+ logger.info("NaN detected")
+ raise AssertionError
+ losses_reduced = sum(loss for loss in loss_dict_reduced.values())
+
+ metric_logger.update(lr=lr)
+ metric_logger.update(wd=wd)
+ metric_logger.update(mom=mom)
+ metric_logger.update(last_layer_lr=last_layer_lr)
+ metric_logger.update(current_batch_size=current_batch_size)
+ metric_logger.update(total_loss=losses_reduced, **loss_dict_reduced)
+
+ # checkpointing and testing
+
+ if cfg.evaluation.eval_period_iterations > 0 and (iteration + 1) % cfg.evaluation.eval_period_iterations == 0:
+ do_test(cfg, model, f"training_{iteration}")
+ torch.cuda.synchronize()
+ periodic_checkpointer.step(iteration)
+
+ iteration = iteration + 1
+ metric_logger.synchronize_between_processes()
+ return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
+
+
+def main(args):
+ cfg = setup(args)
+
+ model = SSLMetaArch(cfg).to(torch.device("cuda"))
+ model.prepare_for_distributed_training()
+
+ logger.info("Model:\n{}".format(model))
+ if args.eval_only:
+ iteration = (
+ FSDPCheckpointer(model, save_dir=cfg.train.output_dir)
+ .resume_or_load(cfg.MODEL.WEIGHTS, resume=not args.no_resume)
+ .get("iteration", -1)
+ + 1
+ )
+ return do_test(cfg, model, f"manual_{iteration}")
+
+ do_train(cfg, model, resume=not args.no_resume)
+
+
+if __name__ == "__main__":
+ args = get_args_parser(add_help=True).parse_args()
+ main(args)
diff --git a/dinov2/dinov2/utils/__init__.py b/dinov2/dinov2/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..0952fcc3f57e34b3747962e9ebd6fc57aeea63fa
--- /dev/null
+++ b/dinov2/dinov2/utils/__init__.py
@@ -0,0 +1,5 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/dinov2/dinov2/utils/cluster.py b/dinov2/dinov2/utils/cluster.py
new file mode 100644
index 0000000000000000000000000000000000000000..8d98c05d68aa6e9dc165df3db06bd70d999b3fda
--- /dev/null
+++ b/dinov2/dinov2/utils/cluster.py
@@ -0,0 +1,96 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from enum import Enum
+import os
+from pathlib import Path
+from typing import Any, Dict, Optional
+
+
+class ClusterType(Enum):
+ AWS = "aws"
+ FAIR = "fair"
+ RSC = "rsc"
+
+
+def _guess_cluster_type() -> ClusterType:
+ uname = os.uname()
+ if uname.sysname == "Linux":
+ if uname.release.endswith("-aws"):
+ # Linux kernel versions on AWS instances are of the form "5.4.0-1051-aws"
+ return ClusterType.AWS
+ elif uname.nodename.startswith("rsc"):
+ # Linux kernel versions on RSC instances are standard ones but hostnames start with "rsc"
+ return ClusterType.RSC
+
+ return ClusterType.FAIR
+
+
+def get_cluster_type(cluster_type: Optional[ClusterType] = None) -> Optional[ClusterType]:
+ if cluster_type is None:
+ return _guess_cluster_type()
+
+ return cluster_type
+
+
+def get_checkpoint_path(cluster_type: Optional[ClusterType] = None) -> Optional[Path]:
+ cluster_type = get_cluster_type(cluster_type)
+ if cluster_type is None:
+ return None
+
+ CHECKPOINT_DIRNAMES = {
+ ClusterType.AWS: "checkpoints",
+ ClusterType.FAIR: "checkpoint",
+ ClusterType.RSC: "checkpoint/dino",
+ }
+ return Path("/") / CHECKPOINT_DIRNAMES[cluster_type]
+
+
+def get_user_checkpoint_path(cluster_type: Optional[ClusterType] = None) -> Optional[Path]:
+ checkpoint_path = get_checkpoint_path(cluster_type)
+ if checkpoint_path is None:
+ return None
+
+ username = os.environ.get("USER")
+ assert username is not None
+ return checkpoint_path / username
+
+
+def get_slurm_partition(cluster_type: Optional[ClusterType] = None) -> Optional[str]:
+ cluster_type = get_cluster_type(cluster_type)
+ if cluster_type is None:
+ return None
+
+ SLURM_PARTITIONS = {
+ ClusterType.AWS: "learnlab",
+ ClusterType.FAIR: "learnlab",
+ ClusterType.RSC: "learn",
+ }
+ return SLURM_PARTITIONS[cluster_type]
+
+
+def get_slurm_executor_parameters(
+ nodes: int, num_gpus_per_node: int, cluster_type: Optional[ClusterType] = None, **kwargs
+) -> Dict[str, Any]:
+ # create default parameters
+ params = {
+ "mem_gb": 0, # Requests all memory on a node, see https://slurm.schedmd.com/sbatch.html
+ "gpus_per_node": num_gpus_per_node,
+ "tasks_per_node": num_gpus_per_node, # one task per GPU
+ "cpus_per_task": 10,
+ "nodes": nodes,
+ "slurm_partition": get_slurm_partition(cluster_type),
+ }
+ # apply cluster-specific adjustments
+ cluster_type = get_cluster_type(cluster_type)
+ if cluster_type == ClusterType.AWS:
+ params["cpus_per_task"] = 12
+ del params["mem_gb"]
+ elif cluster_type == ClusterType.RSC:
+ params["cpus_per_task"] = 12
+ # set additional parameters / apply overrides
+ params.update(kwargs)
+ return params
diff --git a/dinov2/dinov2/utils/config.py b/dinov2/dinov2/utils/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..c3763a8b0808ad45cbbfc1dcb00d52b00113f9ad
--- /dev/null
+++ b/dinov2/dinov2/utils/config.py
@@ -0,0 +1,73 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+import logging
+import os
+
+from omegaconf import OmegaConf
+
+import dinov2.distributed as distributed
+from dinov2.logging import setup_logging
+from dinov2.utils import utils
+from dinov2.configs import dinov2_default_config
+
+
+logger = logging.getLogger("dinov2")
+
+
+def apply_scaling_rules_to_cfg(cfg): # to fix
+ if cfg.optim.scaling_rule == "sqrt_wrt_1024":
+ base_lr = cfg.optim.base_lr
+ cfg.optim.lr = base_lr
+ cfg.optim.lr *= math.sqrt(cfg.train.batch_size_per_gpu * distributed.get_global_size() / 1024.0)
+ logger.info(f"sqrt scaling learning rate; base: {base_lr}, new: {cfg.optim.lr}")
+ else:
+ raise NotImplementedError
+ return cfg
+
+
+def write_config(cfg, output_dir, name="config.yaml"):
+ logger.info(OmegaConf.to_yaml(cfg))
+ saved_cfg_path = os.path.join(output_dir, name)
+ with open(saved_cfg_path, "w") as f:
+ OmegaConf.save(config=cfg, f=f)
+ return saved_cfg_path
+
+
+def get_cfg_from_args(args):
+ args.output_dir = os.path.abspath(args.output_dir)
+ args.opts += [f"train.output_dir={args.output_dir}"]
+ default_cfg = OmegaConf.create(dinov2_default_config)
+ cfg = OmegaConf.load(args.config_file)
+ cfg = OmegaConf.merge(default_cfg, cfg, OmegaConf.from_cli(args.opts))
+ return cfg
+
+
+def default_setup(args):
+ distributed.enable(overwrite=True)
+ seed = getattr(args, "seed", 0)
+ rank = distributed.get_global_rank()
+
+ global logger
+ setup_logging(output=args.output_dir, level=logging.INFO)
+ logger = logging.getLogger("dinov2")
+
+ utils.fix_random_seeds(seed + rank)
+ logger.info("git:\n {}\n".format(utils.get_sha()))
+ logger.info("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
+
+
+def setup(args):
+ """
+ Create configs and perform basic setups.
+ """
+ cfg = get_cfg_from_args(args)
+ os.makedirs(args.output_dir, exist_ok=True)
+ default_setup(args)
+ apply_scaling_rules_to_cfg(cfg)
+ write_config(cfg, args.output_dir)
+ return cfg
diff --git a/dinov2/dinov2/utils/dtype.py b/dinov2/dinov2/utils/dtype.py
new file mode 100644
index 0000000000000000000000000000000000000000..cef122b25ff3533e004799a1d977f63eb213fee0
--- /dev/null
+++ b/dinov2/dinov2/utils/dtype.py
@@ -0,0 +1,38 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+from typing import Dict, Union
+
+import numpy as np
+import torch
+
+
+TypeSpec = Union[str, np.dtype, torch.dtype]
+
+
+_NUMPY_TO_TORCH_DTYPE: Dict[np.dtype, torch.dtype] = {
+ np.dtype("bool"): torch.bool,
+ np.dtype("uint8"): torch.uint8,
+ np.dtype("int8"): torch.int8,
+ np.dtype("int16"): torch.int16,
+ np.dtype("int32"): torch.int32,
+ np.dtype("int64"): torch.int64,
+ np.dtype("float16"): torch.float16,
+ np.dtype("float32"): torch.float32,
+ np.dtype("float64"): torch.float64,
+ np.dtype("complex64"): torch.complex64,
+ np.dtype("complex128"): torch.complex128,
+}
+
+
+def as_torch_dtype(dtype: TypeSpec) -> torch.dtype:
+ if isinstance(dtype, torch.dtype):
+ return dtype
+ if isinstance(dtype, str):
+ dtype = np.dtype(dtype)
+ assert isinstance(dtype, np.dtype), f"Expected an instance of nunpy dtype, got {type(dtype)}"
+ return _NUMPY_TO_TORCH_DTYPE[dtype]
diff --git a/dinov2/dinov2/utils/param_groups.py b/dinov2/dinov2/utils/param_groups.py
new file mode 100644
index 0000000000000000000000000000000000000000..d707e70cc11591858d4166410d6ed80621cd49ff
--- /dev/null
+++ b/dinov2/dinov2/utils/param_groups.py
@@ -0,0 +1,94 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from collections import defaultdict
+import logging
+
+
+logger = logging.getLogger("dinov2")
+
+
+def get_vit_lr_decay_rate(name, lr_decay_rate=1.0, num_layers=12, force_is_backbone=False, chunked_blocks=False):
+ """
+ Calculate lr decay rate for different ViT blocks.
+ Args:
+ name (string): parameter name.
+ lr_decay_rate (float): base lr decay rate.
+ num_layers (int): number of ViT blocks.
+ Returns:
+ lr decay rate for the given parameter.
+ """
+ layer_id = num_layers + 1
+ if name.startswith("backbone") or force_is_backbone:
+ if ".pos_embed" in name or ".patch_embed" in name or ".mask_token" in name or ".cls_token" in name:
+ layer_id = 0
+ elif force_is_backbone and (
+ "pos_embed" in name or "patch_embed" in name or "mask_token" in name or "cls_token" in name
+ ):
+ layer_id = 0
+ elif ".blocks." in name and ".residual." not in name:
+ layer_id = int(name[name.find(".blocks.") :].split(".")[2]) + 1
+ elif chunked_blocks and "blocks." in name and "residual." not in name:
+ layer_id = int(name[name.find("blocks.") :].split(".")[2]) + 1
+ elif "blocks." in name and "residual." not in name:
+ layer_id = int(name[name.find("blocks.") :].split(".")[1]) + 1
+
+ return lr_decay_rate ** (num_layers + 1 - layer_id)
+
+
+def get_params_groups_with_decay(model, lr_decay_rate=1.0, patch_embed_lr_mult=1.0):
+ chunked_blocks = False
+ if hasattr(model, "n_blocks"):
+ logger.info("chunked fsdp")
+ n_blocks = model.n_blocks
+ chunked_blocks = model.chunked_blocks
+ elif hasattr(model, "blocks"):
+ logger.info("first code branch")
+ n_blocks = len(model.blocks)
+ elif hasattr(model, "backbone"):
+ logger.info("second code branch")
+ n_blocks = len(model.backbone.blocks)
+ else:
+ logger.info("else code branch")
+ n_blocks = 0
+ all_param_groups = []
+
+ for name, param in model.named_parameters():
+ name = name.replace("_fsdp_wrapped_module.", "")
+ if not param.requires_grad:
+ continue
+ decay_rate = get_vit_lr_decay_rate(
+ name, lr_decay_rate, num_layers=n_blocks, force_is_backbone=n_blocks > 0, chunked_blocks=chunked_blocks
+ )
+ d = {"params": param, "is_last_layer": False, "lr_multiplier": decay_rate, "wd_multiplier": 1.0, "name": name}
+
+ if "last_layer" in name:
+ d.update({"is_last_layer": True})
+
+ if name.endswith(".bias") or "norm" in name or "gamma" in name:
+ d.update({"wd_multiplier": 0.0})
+
+ if "patch_embed" in name:
+ d.update({"lr_multiplier": d["lr_multiplier"] * patch_embed_lr_mult})
+
+ all_param_groups.append(d)
+ logger.info(f"""{name}: lr_multiplier: {d["lr_multiplier"]}, wd_multiplier: {d["wd_multiplier"]}""")
+
+ return all_param_groups
+
+
+def fuse_params_groups(all_params_groups, keys=("lr_multiplier", "wd_multiplier", "is_last_layer")):
+ fused_params_groups = defaultdict(lambda: {"params": []})
+ for d in all_params_groups:
+ identifier = ""
+ for k in keys:
+ identifier += k + str(d[k]) + "_"
+
+ for k in keys:
+ fused_params_groups[identifier][k] = d[k]
+ fused_params_groups[identifier]["params"].append(d["params"])
+
+ return fused_params_groups.values()
diff --git a/dinov2/dinov2/utils/utils.py b/dinov2/dinov2/utils/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..1d57f177a547e20f5c98b290cb98d961bf779e68
--- /dev/null
+++ b/dinov2/dinov2/utils/utils.py
@@ -0,0 +1,96 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+import random
+import subprocess
+from urllib.parse import urlparse
+
+import numpy as np
+import torch
+from torch import nn
+
+
+logger = logging.getLogger("dinov2")
+
+
+def load_pretrained_weights(model, pretrained_weights, checkpoint_key):
+ if urlparse(pretrained_weights).scheme: # If it looks like an URL
+ state_dict = torch.hub.load_state_dict_from_url(pretrained_weights, map_location="cpu")
+ else:
+ state_dict = torch.load(pretrained_weights, map_location="cpu")
+ if checkpoint_key is not None and checkpoint_key in state_dict:
+ logger.info(f"Take key {checkpoint_key} in provided checkpoint dict")
+ state_dict = state_dict[checkpoint_key]
+ # remove `module.` prefix
+ state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
+ # remove `backbone.` prefix induced by multicrop wrapper
+ state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
+ msg = model.load_state_dict(state_dict, strict=False)
+ logger.info("Pretrained weights found at {} and loaded with msg: {}".format(pretrained_weights, msg))
+
+
+def fix_random_seeds(seed=31):
+ """
+ Fix random seeds.
+ """
+ torch.manual_seed(seed)
+ torch.cuda.manual_seed_all(seed)
+ np.random.seed(seed)
+ random.seed(seed)
+
+
+def get_sha():
+ cwd = os.path.dirname(os.path.abspath(__file__))
+
+ def _run(command):
+ return subprocess.check_output(command, cwd=cwd).decode("ascii").strip()
+
+ sha = "N/A"
+ diff = "clean"
+ branch = "N/A"
+ try:
+ sha = _run(["git", "rev-parse", "HEAD"])
+ subprocess.check_output(["git", "diff"], cwd=cwd)
+ diff = _run(["git", "diff-index", "HEAD"])
+ diff = "has uncommited changes" if diff else "clean"
+ branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"])
+ except Exception:
+ pass
+ message = f"sha: {sha}, status: {diff}, branch: {branch}"
+ return message
+
+
+class CosineScheduler(object):
+ def __init__(self, base_value, final_value, total_iters, warmup_iters=0, start_warmup_value=0, freeze_iters=0):
+ super().__init__()
+ self.final_value = final_value
+ self.total_iters = total_iters
+
+ freeze_schedule = np.zeros((freeze_iters))
+
+ warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
+
+ iters = np.arange(total_iters - warmup_iters - freeze_iters)
+ schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iters / len(iters)))
+ self.schedule = np.concatenate((freeze_schedule, warmup_schedule, schedule))
+
+ assert len(self.schedule) == self.total_iters
+
+ def __getitem__(self, it):
+ if it >= self.total_iters:
+ return self.final_value
+ else:
+ return self.schedule[it]
+
+
+def has_batchnorms(model):
+ bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm)
+ for name, module in model.named_modules():
+ if isinstance(module, bn_types):
+ return True
+ return False
diff --git a/dinov2/hubconf.py b/dinov2/hubconf.py
new file mode 100644
index 0000000000000000000000000000000000000000..bb2196c7bdd16d9b9822dd89bcbe147c256fd255
--- /dev/null
+++ b/dinov2/hubconf.py
@@ -0,0 +1,172 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+import torch.nn as nn
+
+
+dependencies = ["torch"]
+
+
+_DINOV2_BASE_URL = "https://dl.fbaipublicfiles.com/dinov2"
+
+
+def _make_dinov2_model_name(arch_name: str, patch_size: int) -> str:
+ compact_arch_name = arch_name.replace("_", "")[:4]
+ return f"dinov2_{compact_arch_name}{patch_size}"
+
+
+def _make_dinov2_model(
+ *,
+ arch_name: str = "vit_large",
+ img_size: int = 518,
+ patch_size: int = 14,
+ init_values: float = 1.0,
+ ffn_layer: str = "mlp",
+ block_chunks: int = 0,
+ pretrained: bool = True,
+ **kwargs,
+):
+ from dinov2.models import vision_transformer as vits
+
+ model_name = _make_dinov2_model_name(arch_name, patch_size)
+ vit_kwargs = dict(
+ img_size=img_size,
+ patch_size=patch_size,
+ init_values=init_values,
+ ffn_layer=ffn_layer,
+ block_chunks=block_chunks,
+ )
+ vit_kwargs.update(**kwargs)
+ model = vits.__dict__[arch_name](**vit_kwargs)
+
+ #if pretrained:
+ # state_dict = torch.load('')
+ # model.load_state_dict(state_dict, strict=False)
+ return model
+
+
+def dinov2_vits14(*, pretrained: bool = True, **kwargs):
+ """
+ DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset.
+ """
+ return _make_dinov2_model(arch_name="vit_small", pretrained=pretrained, **kwargs)
+
+
+def dinov2_vitb14(*, pretrained: bool = True, **kwargs):
+ """
+ DINOv2 ViT-B/14 model pretrained on the LVD-142M dataset.
+ """
+ return _make_dinov2_model(arch_name="vit_base", pretrained=pretrained, **kwargs)
+
+
+def dinov2_vitl14(*, pretrained: bool = True, **kwargs):
+ """
+ DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset.
+ """
+ return _make_dinov2_model(arch_name="vit_large", pretrained=pretrained, **kwargs)
+
+
+def dinov2_vitg14(*, pretrained: bool = True, **kwargs):
+ """
+ DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset.
+ """
+ return _make_dinov2_model(arch_name="vit_giant2", ffn_layer="swiglufused", pretrained=pretrained, **kwargs)
+
+
+def _make_dinov2_linear_head(
+ *,
+ model_name: str = "dinov2_vitl14",
+ embed_dim: int = 1024,
+ layers: int = 4,
+ pretrained: bool = True,
+ **kwargs,
+):
+ assert layers in (1, 4), f"Unsupported number of layers: {layers}"
+ linear_head = nn.Linear((1 + layers) * embed_dim, 1_000)
+
+ if pretrained:
+ layers_str = str(layers) if layers == 4 else ""
+ url = _DINOV2_BASE_URL + f"/{model_name}/{model_name}_linear{layers_str}_head.pth"
+ state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu")
+ linear_head.load_state_dict(state_dict, strict=False)
+
+ return linear_head
+
+
+class _LinearClassifierWrapper(nn.Module):
+ def __init__(self, *, backbone: nn.Module, linear_head: nn.Module, layers: int = 4):
+ super().__init__()
+ self.backbone = backbone
+ self.linear_head = linear_head
+ self.layers = layers
+
+ def forward(self, x):
+ if self.layers == 1:
+ x = self.backbone.forward_features(x)
+ cls_token = x["x_norm_clstoken"].squeeze(0)
+ patch_tokens = x["x_norm_patchtokens"].squeeze(0)
+ linear_input = torch.cat([
+ cls_token,
+ patch_tokens.mean(0)
+ ])
+ elif self.layers == 4:
+ x = self.backbone.get_intermediate_layers(x, n=4, return_class_token=True)
+ linear_input = torch.cat([
+ x[0][1].squeeze(0),
+ x[1][1].squeeze(0),
+ x[2][1].squeeze(0),
+ x[3][1].squeeze(0),
+ x[3][0].squeeze(0).mean(0)
+ ])
+ else:
+ assert False, f"Unsupported number of layers: {self.layers}"
+ return self.linear_head(linear_input)
+
+
+def _make_dinov2_linear_classifier(
+ *,
+ arch_name: str = "vit_large",
+ layers: int = 4,
+ pretrained: bool = True,
+ **kwargs,
+):
+ backbone = _make_dinov2_model(arch_name=arch_name, pretrained=pretrained, **kwargs)
+
+ embed_dim = backbone.embed_dim
+ patch_size = backbone.patch_size
+ model_name = _make_dinov2_model_name(arch_name, patch_size)
+ linear_head = _make_dinov2_linear_head(model_name=model_name, embed_dim=embed_dim, layers=layers, pretrained=pretrained)
+
+ return _LinearClassifierWrapper(backbone=backbone, linear_head=linear_head, layers=layers)
+
+
+def dinov2_vits14_lc(*, layers: int = 4, pretrained: bool = True, **kwargs):
+ """
+ Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-S/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k.
+ """
+ return _make_dinov2_linear_classifier(arch_name="vit_small", layers=layers, pretrained=pretrained, **kwargs)
+
+
+def dinov2_vitb14_lc(*, pretrained: bool = True, **kwargs):
+ """
+ Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-B/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k.
+ """
+ return _make_dinov2_linear_classifier(arch_name="vit_base", pretrained=pretrained, **kwargs)
+
+
+def dinov2_vitl14_lc(*, pretrained: bool = True, **kwargs):
+ """
+ Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-L/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k.
+ """
+ return _make_dinov2_linear_classifier(arch_name="vit_large", pretrained=pretrained, **kwargs)
+
+
+def dinov2_vitg14_lc(*, pretrained: bool = True, **kwargs):
+ """
+ Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-g/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k.
+ """
+ return _make_dinov2_linear_classifier(arch_name="vit_giant2", ffn_layer="swiglufused", pretrained=pretrained, **kwargs)
diff --git a/dinov2/pyproject.toml b/dinov2/pyproject.toml
new file mode 100644
index 0000000000000000000000000000000000000000..da67abd8ceabe6d427a96e5d9d4f04b25aebcd32
--- /dev/null
+++ b/dinov2/pyproject.toml
@@ -0,0 +1,29 @@
+[tool.black]
+line-length = 120
+
+[tool.pylint.master]
+persistent = false
+score = false
+
+[tool.pylint.messages_control]
+disable = "all"
+enable = [
+ "miscellaneous",
+ "similarities",
+]
+
+[tool.pylint.similarities]
+ignore-comments = true
+ignore-docstrings = true
+ignore-imports = true
+min-similarity-lines = 8
+
+[tool.pylint.reports]
+reports = false
+
+[tool.pylint.miscellaneous]
+notes = [
+ "FIXME",
+ "XXX",
+ "TODO",
+]
diff --git a/dinov2/requirements-dev.txt b/dinov2/requirements-dev.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5cad34c34cde3a182b616d68b168588827eb9b7c
--- /dev/null
+++ b/dinov2/requirements-dev.txt
@@ -0,0 +1,3 @@
+black==22.6.0
+flake8==5.0.4
+pylint==2.15.0
diff --git a/dinov2/requirements.txt b/dinov2/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..04c159c443b89330ff3c84257c41b011f9791257
--- /dev/null
+++ b/dinov2/requirements.txt
@@ -0,0 +1,11 @@
+--extra-index-url https://download.pytorch.org/whl/cu117
+torch==2.0.0
+torchvision==0.15.0
+omegaconf
+torchmetrics==0.10.3
+fvcore
+iopath
+xformers==0.0.18
+submitit
+--extra-index-url https://pypi.nvidia.com
+cuml-cu11
diff --git a/dinov2/scripts/lint.sh b/dinov2/scripts/lint.sh
new file mode 100644
index 0000000000000000000000000000000000000000..b91acaf762c4be3a0c9d2a162210bfebfaacba08
--- /dev/null
+++ b/dinov2/scripts/lint.sh
@@ -0,0 +1,28 @@
+#!/bin/sh
+
+if [ -n "$1" ]; then
+ echo "linting \"$1\""
+fi
+
+echo "running black"
+if [ -n "$1" ]; then
+ black "$1"
+else
+ black dinov2
+fi
+
+echo "running flake8"
+if [ -n "$1" ]; then
+ flake8 "$1"
+else
+ flake8
+fi
+
+echo "running pylint"
+if [ -n "$1" ]; then
+ pylint "$1"
+else
+ pylint dinov2
+fi
+
+exit 0
diff --git a/dinov2/setup.cfg b/dinov2/setup.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..3d97860aa80b40b1aeb01e1646f861bf51d53677
--- /dev/null
+++ b/dinov2/setup.cfg
@@ -0,0 +1,5 @@
+[flake8]
+max-line-length = 120
+ignore = E203,E501,W503
+per-file-ignores =
+ __init__.py:F401
diff --git a/dinov2/setup.py b/dinov2/setup.py
new file mode 100644
index 0000000000000000000000000000000000000000..001987cfeef6c5fe3469ea09cd4698352fa90939
--- /dev/null
+++ b/dinov2/setup.py
@@ -0,0 +1,87 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from pathlib import Path
+import re
+from typing import List, Tuple
+
+from setuptools import setup, find_packages
+
+
+NAME = "dinov2"
+DESCRIPTION = "PyTorch code and models for the DINOv2 self-supervised learning method."
+
+URL = "https://github.com/facebookresearch/dinov2"
+AUTHOR = "FAIR"
+REQUIRES_PYTHON = ">=3.9.0"
+HERE = Path(__file__).parent
+
+
+try:
+ with open(HERE / "README.md", encoding="utf-8") as f:
+ long_description = "\n" + f.read()
+except FileNotFoundError:
+ long_description = DESCRIPTION
+
+
+def get_requirements(path: str = HERE / "requirements.txt") -> Tuple[List[str], List[str]]:
+ requirements = []
+ extra_indices = []
+ with open(path) as f:
+ for line in f.readlines():
+ line = line.rstrip("\r\n")
+ if line.startswith("--extra-index-url "):
+ extra_indices.append(line[18:])
+ continue
+ requirements.append(line)
+ return requirements, extra_indices
+
+
+def get_package_version() -> str:
+ with open(HERE / "dinov2/__init__.py") as f:
+ result = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", f.read(), re.M)
+ if result:
+ return result.group(1)
+ raise RuntimeError("Can't get package version")
+
+
+requirements, extra_indices = get_requirements()
+version = get_package_version()
+dev_requirements, _ = get_requirements(HERE / "requirements-dev.txt")
+
+
+setup(
+ name=NAME,
+ version=version,
+ description=DESCRIPTION,
+ long_description=long_description,
+ long_description_content_type="text/markdown",
+ author=AUTHOR,
+ python_requires=REQUIRES_PYTHON,
+ url=URL,
+ packages=find_packages(),
+ package_data={
+ "": ["*.yaml"],
+ },
+ install_requires=requirements,
+ dependency_links=extra_indices,
+ extras_require={
+ "dev": dev_requirements,
+ },
+ install_package_data=True,
+ license="CC-BY-NC",
+ license_files=("LICENSE",),
+ classifiers=[
+ # Trove classifiers: https://github.com/pypa/trove-classifiers/blob/main/src/trove_classifiers/__init__.py
+ "Development Status :: 3 - Alpha",
+ "Intended Audience :: Developers",
+ "Intended Audience :: Science/Research",
+ "License :: Other/Proprietary License",
+ "Programming Language :: Python :: 3.9",
+ "Topic :: Scientific/Engineering :: Artificial Intelligence",
+ "Topic :: Software Development :: Libraries :: Python Modules",
+ ],
+)
diff --git a/gitattributes b/gitattributes
new file mode 100644
index 0000000000000000000000000000000000000000..a6344aac8c09253b3b630fb776ae94478aa0275b
--- /dev/null
+++ b/gitattributes
@@ -0,0 +1,35 @@
+*.7z filter=lfs diff=lfs merge=lfs -text
+*.arrow filter=lfs diff=lfs merge=lfs -text
+*.bin filter=lfs diff=lfs merge=lfs -text
+*.bz2 filter=lfs diff=lfs merge=lfs -text
+*.ckpt filter=lfs diff=lfs merge=lfs -text
+*.ftz filter=lfs diff=lfs merge=lfs -text
+*.gz filter=lfs diff=lfs merge=lfs -text
+*.h5 filter=lfs diff=lfs merge=lfs -text
+*.joblib filter=lfs diff=lfs merge=lfs -text
+*.lfs.* filter=lfs diff=lfs merge=lfs -text
+*.mlmodel filter=lfs diff=lfs merge=lfs -text
+*.model filter=lfs diff=lfs merge=lfs -text
+*.msgpack filter=lfs diff=lfs merge=lfs -text
+*.npy filter=lfs diff=lfs merge=lfs -text
+*.npz filter=lfs diff=lfs merge=lfs -text
+*.onnx filter=lfs diff=lfs merge=lfs -text
+*.ot filter=lfs diff=lfs merge=lfs -text
+*.parquet filter=lfs diff=lfs merge=lfs -text
+*.pb filter=lfs diff=lfs merge=lfs -text
+*.pickle filter=lfs diff=lfs merge=lfs -text
+*.pkl filter=lfs diff=lfs merge=lfs -text
+*.pt filter=lfs diff=lfs merge=lfs -text
+*.pth filter=lfs diff=lfs merge=lfs -text
+*.rar filter=lfs diff=lfs merge=lfs -text
+*.safetensors filter=lfs diff=lfs merge=lfs -text
+saved_model/**/* filter=lfs diff=lfs merge=lfs -text
+*.tar.* filter=lfs diff=lfs merge=lfs -text
+*.tar filter=lfs diff=lfs merge=lfs -text
+*.tflite filter=lfs diff=lfs merge=lfs -text
+*.tgz filter=lfs diff=lfs merge=lfs -text
+*.wasm filter=lfs diff=lfs merge=lfs -text
+*.xz filter=lfs diff=lfs merge=lfs -text
+*.zip filter=lfs diff=lfs merge=lfs -text
+*.zst filter=lfs diff=lfs merge=lfs -text
+*tfevents* filter=lfs diff=lfs merge=lfs -text
diff --git a/ldm/data/__init__.py b/ldm/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/ldm/data/util.py b/ldm/data/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..5b60ceb2349e3bd7900ff325740e2022d2903b1c
--- /dev/null
+++ b/ldm/data/util.py
@@ -0,0 +1,24 @@
+import torch
+
+from ldm.modules.midas.api import load_midas_transform
+
+
+class AddMiDaS(object):
+ def __init__(self, model_type):
+ super().__init__()
+ self.transform = load_midas_transform(model_type)
+
+ def pt2np(self, x):
+ x = ((x + 1.0) * .5).detach().cpu().numpy()
+ return x
+
+ def np2pt(self, x):
+ x = torch.from_numpy(x) * 2 - 1.
+ return x
+
+ def __call__(self, sample):
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
+ x = self.pt2np(sample['jpg'])
+ x = self.transform({"image": x})["image"]
+ sample['midas_in'] = x
+ return sample
\ No newline at end of file
diff --git a/ldm/models/autoencoder.py b/ldm/models/autoencoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..d122549995ce2cd64092c81a58419ed4a15a02fd
--- /dev/null
+++ b/ldm/models/autoencoder.py
@@ -0,0 +1,219 @@
+import torch
+import pytorch_lightning as pl
+import torch.nn.functional as F
+from contextlib import contextmanager
+
+from ldm.modules.diffusionmodules.model import Encoder, Decoder
+from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
+
+from ldm.util import instantiate_from_config
+from ldm.modules.ema import LitEma
+
+
+class AutoencoderKL(pl.LightningModule):
+ def __init__(self,
+ ddconfig,
+ lossconfig,
+ embed_dim,
+ ckpt_path=None,
+ ignore_keys=[],
+ image_key="image",
+ colorize_nlabels=None,
+ monitor=None,
+ ema_decay=None,
+ learn_logvar=False
+ ):
+ super().__init__()
+ self.learn_logvar = learn_logvar
+ self.image_key = image_key
+ self.encoder = Encoder(**ddconfig)
+ self.decoder = Decoder(**ddconfig)
+ self.loss = instantiate_from_config(lossconfig)
+ assert ddconfig["double_z"]
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
+ self.embed_dim = embed_dim
+ if colorize_nlabels is not None:
+ assert type(colorize_nlabels)==int
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
+ if monitor is not None:
+ self.monitor = monitor
+
+ self.use_ema = ema_decay is not None
+ if self.use_ema:
+ self.ema_decay = ema_decay
+ assert 0. < ema_decay < 1.
+ self.model_ema = LitEma(self, decay=ema_decay)
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
+
+ def init_from_ckpt(self, path, ignore_keys=list()):
+ sd = torch.load(path, map_location="cpu")["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ self.load_state_dict(sd, strict=False)
+ print(f"Restored from {path}")
+
+ @contextmanager
+ def ema_scope(self, context=None):
+ if self.use_ema:
+ self.model_ema.store(self.parameters())
+ self.model_ema.copy_to(self)
+ if context is not None:
+ print(f"{context}: Switched to EMA weights")
+ try:
+ yield None
+ finally:
+ if self.use_ema:
+ self.model_ema.restore(self.parameters())
+ if context is not None:
+ print(f"{context}: Restored training weights")
+
+ def on_train_batch_end(self, *args, **kwargs):
+ if self.use_ema:
+ self.model_ema(self)
+
+ def encode(self, x):
+ h = self.encoder(x)
+ moments = self.quant_conv(h)
+ posterior = DiagonalGaussianDistribution(moments)
+ return posterior
+
+ def decode(self, z):
+ z = self.post_quant_conv(z)
+ dec = self.decoder(z)
+ return dec
+
+ def forward(self, input, sample_posterior=True):
+ posterior = self.encode(input)
+ if sample_posterior:
+ z = posterior.sample()
+ else:
+ z = posterior.mode()
+ dec = self.decode(z)
+ return dec, posterior
+
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
+ return x
+
+ def training_step(self, batch, batch_idx, optimizer_idx):
+ inputs = self.get_input(batch, self.image_key)
+ reconstructions, posterior = self(inputs)
+
+ if optimizer_idx == 0:
+ # train encoder+decoder+logvar
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train")
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
+ return aeloss
+
+ if optimizer_idx == 1:
+ # train the discriminator
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train")
+
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
+ return discloss
+
+ def validation_step(self, batch, batch_idx):
+ log_dict = self._validation_step(batch, batch_idx)
+ with self.ema_scope():
+ log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
+ return log_dict
+
+ def _validation_step(self, batch, batch_idx, postfix=""):
+ inputs = self.get_input(batch, self.image_key)
+ reconstructions, posterior = self(inputs)
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
+ last_layer=self.get_last_layer(), split="val"+postfix)
+
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
+ last_layer=self.get_last_layer(), split="val"+postfix)
+
+ self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
+ self.log_dict(log_dict_ae)
+ self.log_dict(log_dict_disc)
+ return self.log_dict
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
+ self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
+ if self.learn_logvar:
+ print(f"{self.__class__.__name__}: Learning logvar")
+ ae_params_list.append(self.loss.logvar)
+ opt_ae = torch.optim.Adam(ae_params_list,
+ lr=lr, betas=(0.5, 0.9))
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
+ lr=lr, betas=(0.5, 0.9))
+ return [opt_ae, opt_disc], []
+
+ def get_last_layer(self):
+ return self.decoder.conv_out.weight
+
+ @torch.no_grad()
+ def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.image_key)
+ x = x.to(self.device)
+ if not only_inputs:
+ xrec, posterior = self(x)
+ if x.shape[1] > 3:
+ # colorize with random projection
+ assert xrec.shape[1] > 3
+ x = self.to_rgb(x)
+ xrec = self.to_rgb(xrec)
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
+ log["reconstructions"] = xrec
+ if log_ema or self.use_ema:
+ with self.ema_scope():
+ xrec_ema, posterior_ema = self(x)
+ if x.shape[1] > 3:
+ # colorize with random projection
+ assert xrec_ema.shape[1] > 3
+ xrec_ema = self.to_rgb(xrec_ema)
+ log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
+ log["reconstructions_ema"] = xrec_ema
+ log["inputs"] = x
+ return log
+
+ def to_rgb(self, x):
+ assert self.image_key == "segmentation"
+ if not hasattr(self, "colorize"):
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
+ x = F.conv2d(x, weight=self.colorize)
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
+ return x
+
+
+class IdentityFirstStage(torch.nn.Module):
+ def __init__(self, *args, vq_interface=False, **kwargs):
+ self.vq_interface = vq_interface
+ super().__init__()
+
+ def encode(self, x, *args, **kwargs):
+ return x
+
+ def decode(self, x, *args, **kwargs):
+ return x
+
+ def quantize(self, x, *args, **kwargs):
+ if self.vq_interface:
+ return x, None, [None, None, None]
+ return x
+
+ def forward(self, x, *args, **kwargs):
+ return x
+
diff --git a/ldm/models/diffusion/__init__.py b/ldm/models/diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/ldm/models/diffusion/ddim.py b/ldm/models/diffusion/ddim.py
new file mode 100644
index 0000000000000000000000000000000000000000..27ead0ea914c64c747b64e690662899fb3801144
--- /dev/null
+++ b/ldm/models/diffusion/ddim.py
@@ -0,0 +1,336 @@
+"""SAMPLING ONLY."""
+
+import torch
+import numpy as np
+from tqdm import tqdm
+
+from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
+
+
+class DDIMSampler(object):
+ def __init__(self, model, schedule="linear", **kwargs):
+ super().__init__()
+ self.model = model
+ self.ddpm_num_timesteps = model.num_timesteps
+ self.schedule = schedule
+
+ def register_buffer(self, name, attr):
+ if type(attr) == torch.Tensor:
+ if attr.device != torch.device("cuda"):
+ attr = attr.to(torch.device("cuda"))
+ setattr(self, name, attr)
+
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
+ alphas_cumprod = self.model.alphas_cumprod
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
+
+ self.register_buffer('betas', to_torch(self.model.betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+ # ddim sampling parameters
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+ ddim_timesteps=self.ddim_timesteps,
+ eta=ddim_eta,verbose=verbose)
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
+ self.register_buffer('ddim_alphas', ddim_alphas)
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+ @torch.no_grad()
+ def sample(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ dynamic_threshold=None,
+ ucg_schedule=None,
+ **kwargs
+ ):
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ ctmp = conditioning[list(conditioning.keys())[0]]
+ while isinstance(ctmp, list): ctmp = ctmp[0]
+ cbs = ctmp.shape[0]
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+
+ elif isinstance(conditioning, list):
+ for ctmp in conditioning:
+ if ctmp.shape[0] != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+ # sampling
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
+
+ samples, intermediates = self.ddim_sampling(conditioning, size,
+ callback=callback,
+ img_callback=img_callback,
+ quantize_denoised=quantize_x0,
+ mask=mask, x0=x0,
+ ddim_use_original_steps=False,
+ noise_dropout=noise_dropout,
+ temperature=temperature,
+ score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ x_T=x_T,
+ log_every_t=log_every_t,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ dynamic_threshold=dynamic_threshold,
+ ucg_schedule=ucg_schedule
+ )
+ return samples, intermediates
+
+ @torch.no_grad()
+ def ddim_sampling(self, cond, shape,
+ x_T=None, ddim_use_original_steps=False,
+ callback=None, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, img_callback=None, log_every_t=100,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
+ ucg_schedule=None):
+ device = self.model.betas.device
+ b = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=device)
+ else:
+ img = x_T
+
+ if timesteps is None:
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
+ elif timesteps is not None and not ddim_use_original_steps:
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
+ timesteps = self.ddim_timesteps[:subset_end]
+
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
+
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
+
+ for i, step in enumerate(iterator):
+ index = total_steps - i - 1
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
+
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
+ img = img_orig * mask + (1. - mask) * img
+
+ if ucg_schedule is not None:
+ assert len(ucg_schedule) == len(time_range)
+ unconditional_guidance_scale = ucg_schedule[i]
+
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
+ quantize_denoised=quantize_denoised, temperature=temperature,
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ dynamic_threshold=dynamic_threshold)
+ img, pred_x0 = outs
+ if callback: callback(i)
+ if img_callback: img_callback(pred_x0, i)
+
+ if index % log_every_t == 0 or index == total_steps - 1:
+ intermediates['x_inter'].append(img)
+ intermediates['pred_x0'].append(pred_x0)
+
+ return img, intermediates
+
+ @torch.no_grad()
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
+ dynamic_threshold=None):
+ b, *_, device = *x.shape, x.device
+
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+ model_output = self.model.apply_model(x, t, c)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t] * 2)
+ if isinstance(c, dict):
+ assert isinstance(unconditional_conditioning, dict)
+ c_in = dict()
+ for k in c:
+ if isinstance(c[k], list):
+ c_in[k] = [torch.cat([
+ unconditional_conditioning[k][i],
+ c[k][i]]) for i in range(len(c[k]))]
+ else:
+ c_in[k] = torch.cat([
+ unconditional_conditioning[k],
+ c[k]])
+ elif isinstance(c, list):
+ c_in = list()
+ assert isinstance(unconditional_conditioning, list)
+ for i in range(len(c)):
+ c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
+ else:
+ c_in = torch.cat([unconditional_conditioning, c])
+ model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
+ model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
+
+ if self.model.parameterization == "v":
+ e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
+ else:
+ e_t = model_output
+
+ if score_corrector is not None:
+ assert self.model.parameterization == "eps", 'not implemented'
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+ # select parameters corresponding to the currently considered timestep
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
+
+ # current prediction for x_0
+ if self.model.parameterization != "v":
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+ else:
+ pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
+
+ if quantize_denoised:
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+
+ if dynamic_threshold is not None:
+ raise NotImplementedError()
+
+ # direction pointing to x_t
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+ return x_prev, pred_x0
+
+ @torch.no_grad()
+ def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
+ unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
+ num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
+
+ assert t_enc <= num_reference_steps
+ num_steps = t_enc
+
+ if use_original_steps:
+ alphas_next = self.alphas_cumprod[:num_steps]
+ alphas = self.alphas_cumprod_prev[:num_steps]
+ else:
+ alphas_next = self.ddim_alphas[:num_steps]
+ alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
+
+ x_next = x0
+ intermediates = []
+ inter_steps = []
+ for i in tqdm(range(num_steps), desc='Encoding Image'):
+ t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
+ if unconditional_guidance_scale == 1.:
+ noise_pred = self.model.apply_model(x_next, t, c)
+ else:
+ assert unconditional_conditioning is not None
+ e_t_uncond, noise_pred = torch.chunk(
+ self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
+ torch.cat((unconditional_conditioning, c))), 2)
+ noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
+
+ xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
+ weighted_noise_pred = alphas_next[i].sqrt() * (
+ (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
+ x_next = xt_weighted + weighted_noise_pred
+ if return_intermediates and i % (
+ num_steps // return_intermediates) == 0 and i < num_steps - 1:
+ intermediates.append(x_next)
+ inter_steps.append(i)
+ elif return_intermediates and i >= num_steps - 2:
+ intermediates.append(x_next)
+ inter_steps.append(i)
+ if callback: callback(i)
+
+ out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
+ if return_intermediates:
+ out.update({'intermediates': intermediates})
+ return x_next, out
+
+ @torch.no_grad()
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
+ # fast, but does not allow for exact reconstruction
+ # t serves as an index to gather the correct alphas
+ if use_original_steps:
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
+ else:
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
+
+ if noise is None:
+ noise = torch.randn_like(x0)
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
+
+ @torch.no_grad()
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
+ use_original_steps=False, callback=None):
+
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
+ timesteps = timesteps[:t_start]
+
+ time_range = np.flip(timesteps)
+ total_steps = timesteps.shape[0]
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
+
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
+ x_dec = x_latent
+ for i, step in enumerate(iterator):
+ index = total_steps - i - 1
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning)
+ if callback: callback(i)
+ return x_dec
\ No newline at end of file
diff --git a/ldm/models/diffusion/ddpm.py b/ldm/models/diffusion/ddpm.py
new file mode 100644
index 0000000000000000000000000000000000000000..bc3a782ec37390ec3cd3e9f0eb5d53334d8e97a9
--- /dev/null
+++ b/ldm/models/diffusion/ddpm.py
@@ -0,0 +1,1809 @@
+"""
+wild mixture of
+https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
+https://github.com/CompVis/taming-transformers
+-- merci
+"""
+
+import torch
+import torch.nn as nn
+import numpy as np
+import pytorch_lightning as pl
+from torch.optim.lr_scheduler import LambdaLR
+from einops import rearrange, repeat
+from contextlib import contextmanager, nullcontext
+from functools import partial
+import itertools
+from tqdm import tqdm
+from torchvision.utils import make_grid
+from pytorch_lightning.utilities.distributed import rank_zero_only
+from omegaconf import ListConfig
+import torch.nn.functional as F
+from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
+from ldm.modules.ema import LitEma
+from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
+from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
+from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
+from ldm.models.diffusion.ddim import DDIMSampler
+
+
+__conditioning_keys__ = {'concat': 'c_concat',
+ 'crossattn': 'c_crossattn',
+ 'adm': 'y'}
+
+
+def disabled_train(self, mode=True):
+ """Overwrite model.train with this function to make sure train/eval mode
+ does not change anymore."""
+ return self
+
+
+def uniform_on_device(r1, r2, shape, device):
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
+
+
+class DDPM(pl.LightningModule):
+ # classic DDPM with Gaussian diffusion, in image space
+ def __init__(self,
+ unet_config,
+ timesteps=1000,
+ beta_schedule="linear",
+ loss_type="l2",
+ ckpt_path=None,
+ ignore_keys=[],
+ load_only_unet=False,
+ monitor="val/loss",
+ use_ema=True,
+ first_stage_key="image",
+ image_size=256,
+ channels=3,
+ log_every_t=100,
+ clip_denoised=True,
+ linear_start=1e-4,
+ linear_end=2e-2,
+ cosine_s=8e-3,
+ given_betas=None,
+ original_elbo_weight=0.,
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
+ l_simple_weight=1.,
+ conditioning_key=None,
+ parameterization="eps", # all assuming fixed variance schedules
+ scheduler_config=None,
+ use_positional_encodings=False,
+ learn_logvar=False,
+ logvar_init=0.,
+ make_it_fit=False,
+ ucg_training=None,
+ reset_ema=False,
+ reset_num_ema_updates=False,
+ ):
+ super().__init__()
+ assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
+ self.parameterization = parameterization
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
+ self.cond_stage_model = None
+ self.clip_denoised = clip_denoised
+ self.log_every_t = log_every_t
+ self.first_stage_key = first_stage_key
+ self.image_size = image_size # try conv?
+ self.channels = channels
+ self.use_positional_encodings = use_positional_encodings
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
+ count_params(self.model, verbose=True)
+ self.use_ema = use_ema
+ if self.use_ema:
+ self.model_ema = LitEma(self.model)
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+ self.use_scheduler = scheduler_config is not None
+ if self.use_scheduler:
+ self.scheduler_config = scheduler_config
+
+ self.v_posterior = v_posterior
+ self.original_elbo_weight = original_elbo_weight
+ self.l_simple_weight = l_simple_weight
+
+ if monitor is not None:
+ self.monitor = monitor
+ self.make_it_fit = make_it_fit
+ if reset_ema: assert exists(ckpt_path)
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
+ if reset_ema:
+ assert self.use_ema
+ print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
+ self.model_ema = LitEma(self.model)
+ if reset_num_ema_updates:
+ print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
+ assert self.use_ema
+ self.model_ema.reset_num_updates()
+
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
+
+ self.loss_type = loss_type
+
+ self.learn_logvar = learn_logvar
+ logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
+ if self.learn_logvar:
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
+ else:
+ self.register_buffer('logvar', logvar)
+
+ self.ucg_training = ucg_training or dict()
+ if self.ucg_training:
+ self.ucg_prng = np.random.RandomState()
+
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ if exists(given_betas):
+ betas = given_betas
+ else:
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
+ cosine_s=cosine_s)
+ alphas = 1. - betas
+ alphas_cumprod = np.cumprod(alphas, axis=0)
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+
+ timesteps, = betas.shape
+ self.num_timesteps = int(timesteps)
+ self.linear_start = linear_start
+ self.linear_end = linear_end
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
+
+ to_torch = partial(torch.tensor, dtype=torch.float32)
+
+ self.register_buffer('betas', to_torch(betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
+ 1. - alphas_cumprod) + self.v_posterior * betas
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
+ self.register_buffer('posterior_mean_coef1', to_torch(
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
+ self.register_buffer('posterior_mean_coef2', to_torch(
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
+
+ if self.parameterization == "eps":
+ lvlb_weights = self.betas ** 2 / (
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
+ elif self.parameterization == "x0":
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
+ elif self.parameterization == "v":
+ lvlb_weights = torch.ones_like(self.betas ** 2 / (
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
+ else:
+ raise NotImplementedError("mu not supported")
+ lvlb_weights[0] = lvlb_weights[1]
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
+ assert not torch.isnan(self.lvlb_weights).all()
+
+ @contextmanager
+ def ema_scope(self, context=None):
+ if self.use_ema:
+ self.model_ema.store(self.model.parameters())
+ self.model_ema.copy_to(self.model)
+ if context is not None:
+ print(f"{context}: Switched to EMA weights")
+ try:
+ yield None
+ finally:
+ if self.use_ema:
+ self.model_ema.restore(self.model.parameters())
+ if context is not None:
+ print(f"{context}: Restored training weights")
+
+ @torch.no_grad()
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ sd = torch.load(path, map_location="cpu")
+ if "state_dict" in list(sd.keys()):
+ sd = sd["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ if self.make_it_fit:
+ n_params = len([name for name, _ in
+ itertools.chain(self.named_parameters(),
+ self.named_buffers())])
+ for name, param in tqdm(
+ itertools.chain(self.named_parameters(),
+ self.named_buffers()),
+ desc="Fitting old weights to new weights",
+ total=n_params
+ ):
+ if not name in sd:
+ continue
+ old_shape = sd[name].shape
+ new_shape = param.shape
+ assert len(old_shape) == len(new_shape)
+ if len(new_shape) > 2:
+ # we only modify first two axes
+ assert new_shape[2:] == old_shape[2:]
+ # assumes first axis corresponds to output dim
+ if not new_shape == old_shape:
+ new_param = param.clone()
+ old_param = sd[name]
+ if len(new_shape) == 1:
+ for i in range(new_param.shape[0]):
+ new_param[i] = old_param[i % old_shape[0]]
+ elif len(new_shape) >= 2:
+ for i in range(new_param.shape[0]):
+ for j in range(new_param.shape[1]):
+ new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
+
+ n_used_old = torch.ones(old_shape[1])
+ for j in range(new_param.shape[1]):
+ n_used_old[j % old_shape[1]] += 1
+ n_used_new = torch.zeros(new_shape[1])
+ for j in range(new_param.shape[1]):
+ n_used_new[j] = n_used_old[j % old_shape[1]]
+
+ n_used_new = n_used_new[None, :]
+ while len(n_used_new.shape) < len(new_shape):
+ n_used_new = n_used_new.unsqueeze(-1)
+ new_param /= n_used_new
+
+ sd[name] = new_param
+
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+ sd, strict=False)
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ print(f"Missing Keys:\n {missing}")
+ if len(unexpected) > 0:
+ print(f"\nUnexpected Keys:\n {unexpected}")
+
+ def q_mean_variance(self, x_start, t):
+ """
+ Get the distribution q(x_t | x_0).
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
+ """
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
+ return mean, variance, log_variance
+
+ def predict_start_from_noise(self, x_t, t, noise):
+ return (
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
+ )
+
+ def predict_start_from_z_and_v(self, x_t, t, v):
+ # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+ # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+ return (
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
+ )
+
+ def predict_eps_from_z_and_v(self, x_t, t, v):
+ return (
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
+ )
+
+ def q_posterior(self, x_start, x_t, t):
+ posterior_mean = (
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
+ )
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+ def p_mean_variance(self, x, t, clip_denoised: bool):
+ model_out = self.model(x, t)
+ if self.parameterization == "eps":
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+ elif self.parameterization == "x0":
+ x_recon = model_out
+ if clip_denoised:
+ x_recon.clamp_(-1., 1.)
+
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
+ b, *_, device = *x.shape, x.device
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
+ noise = noise_like(x.shape, device, repeat_noise)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def p_sample_loop(self, shape, return_intermediates=False):
+ device = self.betas.device
+ b = shape[0]
+ img = torch.randn(shape, device=device)
+ intermediates = [img]
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
+ clip_denoised=self.clip_denoised)
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
+ intermediates.append(img)
+ if return_intermediates:
+ return img, intermediates
+ return img
+
+ @torch.no_grad()
+ def sample(self, batch_size=16, return_intermediates=False):
+ image_size = self.image_size
+ channels = self.channels
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
+ return_intermediates=return_intermediates)
+
+ def q_sample(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
+
+ def get_v(self, x, noise, t):
+ return (
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
+ )
+
+ def get_loss(self, pred, target, mean=True):
+ if self.loss_type == 'l1':
+ loss = (target - pred).abs()
+ if mean:
+ loss = loss.mean()
+ elif self.loss_type == 'l2':
+ if mean:
+ loss = torch.nn.functional.mse_loss(target, pred)
+ else:
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
+ else:
+ raise NotImplementedError("unknown loss type '{loss_type}'")
+
+ return loss
+
+ def p_losses(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ model_out = self.model(x_noisy, t)
+
+ loss_dict = {}
+ if self.parameterization == "eps":
+ target = noise
+ elif self.parameterization == "x0":
+ target = x_start
+ elif self.parameterization == "v":
+ target = self.get_v(x_start, noise, t)
+ else:
+ raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
+
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
+
+ log_prefix = 'train' if self.training else 'val'
+
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
+ loss_simple = loss.mean() * self.l_simple_weight
+
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
+
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
+
+ loss_dict.update({f'{log_prefix}/loss': loss})
+
+ return loss, loss_dict
+
+ def forward(self, x, *args, **kwargs):
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+ return self.p_losses(x, t, *args, **kwargs)
+
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = rearrange(x, 'b h w c -> b c h w')
+ x = x.to(memory_format=torch.contiguous_format).float()
+ return x
+
+ def shared_step(self, batch):
+ x = self.get_input(batch, self.first_stage_key)
+ loss, loss_dict = self(x)
+ return loss, loss_dict
+
+ def training_step(self, batch, batch_idx):
+ for k in self.ucg_training:
+ p = self.ucg_training[k]["p"]
+ val = self.ucg_training[k]["val"]
+ if val is None:
+ val = ""
+ for i in range(len(batch[k])):
+ if self.ucg_prng.choice(2, p=[1 - p, p]):
+ batch[k][i] = val
+
+ loss, loss_dict = self.shared_step(batch)
+
+ self.log_dict(loss_dict, prog_bar=True,
+ logger=True, on_step=True, on_epoch=True)
+
+ self.log("global_step", self.global_step,
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+ if self.use_scheduler:
+ lr = self.optimizers().param_groups[0]['lr']
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+ return loss
+
+ @torch.no_grad()
+ def validation_step(self, batch, batch_idx):
+ _, loss_dict_no_ema = self.shared_step(batch)
+ with self.ema_scope():
+ _, loss_dict_ema = self.shared_step(batch)
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+
+ def on_train_batch_end(self, *args, **kwargs):
+ if self.use_ema:
+ self.model_ema(self.model)
+
+ def _get_rows_from_list(self, samples):
+ n_imgs_per_row = len(samples)
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+ return denoise_grid
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.first_stage_key)
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ x = x.to(self.device)[:N]
+ log["inputs"] = x
+
+ # get diffusion row
+ diffusion_row = list()
+ x_start = x[:n_row]
+
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(x_start)
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ diffusion_row.append(x_noisy)
+
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
+
+ if sample:
+ # get denoise row
+ with self.ema_scope("Plotting"):
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
+
+ log["samples"] = samples
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
+
+ if return_keys:
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+ return log
+ else:
+ return {key: log[key] for key in return_keys}
+ return log
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ params = list(self.model.parameters())
+ if self.learn_logvar:
+ params = params + [self.logvar]
+ opt = torch.optim.AdamW(params, lr=lr)
+ return opt
+
+
+class LatentDiffusion(DDPM):
+ """main class"""
+
+ def __init__(self,
+ first_stage_config,
+ cond_stage_config,
+ num_timesteps_cond=None,
+ cond_stage_key="image",
+ cond_stage_trainable=False,
+ concat_mode=True,
+ cond_stage_forward=None,
+ conditioning_key=None,
+ scale_factor=1.0,
+ scale_by_std=False,
+ force_null_conditioning=False,
+ *args, **kwargs):
+ self.force_null_conditioning = force_null_conditioning
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
+ self.scale_by_std = scale_by_std
+ assert self.num_timesteps_cond <= kwargs['timesteps']
+ # for backwards compatibility after implementation of DiffusionWrapper
+ if conditioning_key is None:
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
+ if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
+ conditioning_key = None
+ ckpt_path = kwargs.pop("ckpt_path", None)
+ reset_ema = kwargs.pop("reset_ema", False)
+ reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
+ ignore_keys = kwargs.pop("ignore_keys", [])
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
+ self.concat_mode = concat_mode
+ self.cond_stage_trainable = cond_stage_trainable
+ self.cond_stage_key = cond_stage_key
+ try:
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
+ except:
+ self.num_downs = 0
+ if not scale_by_std:
+ self.scale_factor = scale_factor
+ else:
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
+ self.instantiate_first_stage(first_stage_config)
+ self.instantiate_cond_stage(cond_stage_config)
+ self.cond_stage_forward = cond_stage_forward
+ self.clip_denoised = False
+ self.bbox_tokenizer = None
+
+ self.restarted_from_ckpt = False
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys)
+ self.restarted_from_ckpt = True
+ if reset_ema:
+ assert self.use_ema
+ print(
+ f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
+ self.model_ema = LitEma(self.model)
+ if reset_num_ema_updates:
+ print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
+ assert self.use_ema
+ self.model_ema.reset_num_updates()
+
+ def make_cond_schedule(self, ):
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
+ self.cond_ids[:self.num_timesteps_cond] = ids
+
+ @rank_zero_only
+ @torch.no_grad()
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
+ # only for very first batch
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
+ # set rescale weight to 1./std of encodings
+ print("### USING STD-RESCALING ###")
+ x = super().get_input(batch, self.first_stage_key)
+ x = x.to(self.device)
+ encoder_posterior = self.encode_first_stage(x)
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
+ del self.scale_factor
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
+ print(f"setting self.scale_factor to {self.scale_factor}")
+ print("### USING STD-RESCALING ###")
+
+ def register_schedule(self,
+ given_betas=None, beta_schedule="linear", timesteps=1000,
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
+
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
+ if self.shorten_cond_schedule:
+ self.make_cond_schedule()
+
+ def instantiate_first_stage(self, config):
+ model = instantiate_from_config(config)
+ self.first_stage_model = model.eval()
+ self.first_stage_model.train = disabled_train
+ for param in self.first_stage_model.parameters():
+ param.requires_grad = False
+
+ def instantiate_cond_stage(self, config):
+ if not self.cond_stage_trainable:
+ if config == "__is_first_stage__":
+ print("Using first stage also as cond stage.")
+ self.cond_stage_model = self.first_stage_model
+ elif config == "__is_unconditional__":
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
+ self.cond_stage_model = None
+ # self.be_unconditional = True
+ else:
+ model = instantiate_from_config(config)
+ self.cond_stage_model = model.eval()
+ self.cond_stage_model.train = disabled_train
+ for param in self.cond_stage_model.parameters():
+ param.requires_grad = False
+ else:
+ assert config != '__is_first_stage__'
+ assert config != '__is_unconditional__'
+ model = instantiate_from_config(config)
+ self.cond_stage_model = model
+
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
+ denoise_row = []
+ for zd in tqdm(samples, desc=desc):
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
+ force_not_quantize=force_no_decoder_quantization))
+ n_imgs_per_row = len(denoise_row)
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+ return denoise_grid
+
+ def get_first_stage_encoding(self, encoder_posterior):
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
+ z = encoder_posterior.sample()
+ elif isinstance(encoder_posterior, torch.Tensor):
+ z = encoder_posterior
+ else:
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
+ return self.scale_factor * z
+
+ def get_learned_conditioning(self, c):
+ #c 1,3,224,224
+ if self.cond_stage_forward is None:
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
+ #1,1,1024
+ c = self.cond_stage_model.encode(c)
+ if isinstance(c, DiagonalGaussianDistribution):
+ c = c.mode()
+ else:
+ c = self.cond_stage_model(c)
+ else:
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
+ return c
+
+ def meshgrid(self, h, w):
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
+
+ arr = torch.cat([y, x], dim=-1)
+ return arr
+
+ def delta_border(self, h, w):
+ """
+ :param h: height
+ :param w: width
+ :return: normalized distance to image border,
+ wtith min distance = 0 at border and max dist = 0.5 at image center
+ """
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
+ arr = self.meshgrid(h, w) / lower_right_corner
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
+ return edge_dist
+
+ def get_weighting(self, h, w, Ly, Lx, device):
+ weighting = self.delta_border(h, w)
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
+ self.split_input_params["clip_max_weight"], )
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
+
+ if self.split_input_params["tie_braker"]:
+ L_weighting = self.delta_border(Ly, Lx)
+ L_weighting = torch.clip(L_weighting,
+ self.split_input_params["clip_min_tie_weight"],
+ self.split_input_params["clip_max_tie_weight"])
+
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
+ weighting = weighting * L_weighting
+ return weighting
+
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
+ """
+ :param x: img of size (bs, c, h, w)
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
+ """
+ bs, nc, h, w = x.shape
+
+ # number of crops in image
+ Ly = (h - kernel_size[0]) // stride[0] + 1
+ Lx = (w - kernel_size[1]) // stride[1] + 1
+
+ if uf == 1 and df == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
+
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
+
+ elif uf > 1 and df == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
+ dilation=1, padding=0,
+ stride=(stride[0] * uf, stride[1] * uf))
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
+
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
+
+ elif df > 1 and uf == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
+ dilation=1, padding=0,
+ stride=(stride[0] // df, stride[1] // df))
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
+
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
+
+ else:
+ raise NotImplementedError
+
+ return fold, unfold, normalization, weighting
+
+ @torch.no_grad()
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
+ cond_key=None, return_original_cond=False, bs=None, return_x=False):
+ x = super().get_input(batch, k)
+ if bs is not None:
+ x = x[:bs]
+ x = x.to(self.device)
+ encoder_posterior = self.encode_first_stage(x)
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
+
+ if self.model.conditioning_key is not None and not self.force_null_conditioning:
+ if cond_key is None:
+ cond_key = self.cond_stage_key
+ if cond_key != self.first_stage_key:
+ if cond_key in ['caption', 'coordinates_bbox', "txt"]:
+ xc = batch[cond_key]
+ elif cond_key in ['class_label', 'cls']:
+ xc = batch
+ else:
+ xc = super().get_input(batch, cond_key).to(self.device)
+ else:
+ xc = x
+ if not self.cond_stage_trainable or force_c_encode:
+ if isinstance(xc, dict) or isinstance(xc, list):
+ c = self.get_learned_conditioning(xc)
+ else:
+ c = self.get_learned_conditioning(xc.to(self.device))
+ else:
+ c = xc
+ if bs is not None:
+ c = c[:bs]
+
+ if self.use_positional_encodings:
+ pos_x, pos_y = self.compute_latent_shifts(batch)
+ ckey = __conditioning_keys__[self.model.conditioning_key]
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
+
+ else:
+ c = None
+ xc = None
+ if self.use_positional_encodings:
+ pos_x, pos_y = self.compute_latent_shifts(batch)
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
+ out = [z, c]
+ if return_first_stage_outputs:
+ xrec = self.decode_first_stage(z)
+ out.extend([x, xrec])
+ if return_x:
+ out.extend([x])
+ if return_original_cond:
+ out.append(xc)
+ return out
+
+ @torch.no_grad()
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
+ if predict_cids:
+ if z.dim() == 4:
+ z = torch.argmax(z.exp(), dim=1).long()
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
+
+ z = 1. / self.scale_factor * z
+ return self.first_stage_model.decode(z)
+
+ @torch.no_grad()
+ def encode_first_stage(self, x):
+ return self.first_stage_model.encode(x)
+
+ def shared_step(self, batch, **kwargs):
+ x, c = self.get_input(batch, self.first_stage_key)
+ loss = self(x, c)
+ return loss
+
+ def forward(self, x, c, *args, **kwargs):
+ #t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+ t = self.time_steps.reshape( (x.shape[0],) ).to(self.device).long()
+
+ if self.model.conditioning_key is not None:
+ assert c is not None
+ if self.cond_stage_trainable:
+ c = self.get_learned_conditioning(c)
+ if self.shorten_cond_schedule: # TODO: drop this option
+ tc = self.cond_ids[t].to(self.device)
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
+ return self.p_losses(x, c, t, *args, **kwargs)
+
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
+ if isinstance(cond, dict):
+ # hybrid case, cond is expected to be a dict
+ pass
+ else:
+ if not isinstance(cond, list):
+ cond = [cond]
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
+ cond = {key: cond}
+
+ x_recon = self.model(x_noisy, t, **cond)
+
+ if isinstance(x_recon, tuple) and not return_ids:
+ return x_recon[0]
+ else:
+ return x_recon
+
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
+
+ def _prior_bpd(self, x_start):
+ """
+ Get the prior KL term for the variational lower-bound, measured in
+ bits-per-dim.
+ This term can't be optimized, as it only depends on the encoder.
+ :param x_start: the [N x C x ...] tensor of inputs.
+ :return: a batch of [N] KL values (in bits), one per batch element.
+ """
+ batch_size = x_start.shape[0]
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
+ return mean_flat(kl_prior) / np.log(2.0)
+
+ def p_losses(self, x_start, cond, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ model_output = self.apply_model(x_noisy, t, cond)
+
+ loss_dict = {}
+ prefix = 'train' if self.training else 'val'
+
+ if self.parameterization == "x0":
+ target = x_start
+ elif self.parameterization == "eps":
+ target = noise
+ elif self.parameterization == "v":
+ target = self.get_v(x_start, noise, t)
+ else:
+ raise NotImplementedError()
+
+ loss_simple = self.get_loss(model_output, target, mean=False)
+ #boundary = self.boundary.to(loss_simple.device)
+ #boundary = F.interpolate(boundary, size = (64,64)) * 5 + 1.0 #16,1,64,64
+
+ #print(loss_simple.shape) #16,4,64,64
+ loss_simple = loss_simple.mean([1, 2, 3])
+ #.mean([1, 2, 3])
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
+
+ logvar_t = self.logvar[t].to(self.device)
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
+ if self.learn_logvar:
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
+ loss_dict.update({'logvar': self.logvar.data.mean()})
+
+ loss = self.l_simple_weight * loss.mean()
+
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
+ loss += (self.original_elbo_weight * loss_vlb)
+ loss_dict.update({f'{prefix}/loss': loss})
+
+ #print(self.parameterization, self.learn_logvar, self.original_elbo_weight, self.lvlb_weights[t])
+
+ return loss, loss_dict
+
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
+ t_in = t
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
+
+ if score_corrector is not None:
+ assert self.parameterization == "eps"
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
+
+ if return_codebook_ids:
+ model_out, logits = model_out
+
+ if self.parameterization == "eps":
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+ elif self.parameterization == "x0":
+ x_recon = model_out
+ else:
+ raise NotImplementedError()
+
+ if clip_denoised:
+ x_recon.clamp_(-1., 1.)
+ if quantize_denoised:
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ if return_codebook_ids:
+ return model_mean, posterior_variance, posterior_log_variance, logits
+ elif return_x0:
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
+ else:
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
+ b, *_, device = *x.shape, x.device
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
+ return_codebook_ids=return_codebook_ids,
+ quantize_denoised=quantize_denoised,
+ return_x0=return_x0,
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+ if return_codebook_ids:
+ raise DeprecationWarning("Support dropped.")
+ model_mean, _, model_log_variance, logits = outputs
+ elif return_x0:
+ model_mean, _, model_log_variance, x0 = outputs
+ else:
+ model_mean, _, model_log_variance = outputs
+
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+
+ if return_codebook_ids:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
+ if return_x0:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
+ else:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
+ log_every_t=None):
+ if not log_every_t:
+ log_every_t = self.log_every_t
+ timesteps = self.num_timesteps
+ if batch_size is not None:
+ b = batch_size if batch_size is not None else shape[0]
+ shape = [batch_size] + list(shape)
+ else:
+ b = batch_size = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=self.device)
+ else:
+ img = x_T
+ intermediates = []
+ if cond is not None:
+ if isinstance(cond, dict):
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+ else:
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+
+ if start_T is not None:
+ timesteps = min(timesteps, start_T)
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
+ total=timesteps) if verbose else reversed(
+ range(0, timesteps))
+ if type(temperature) == float:
+ temperature = [temperature] * timesteps
+
+ for i in iterator:
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
+ if self.shorten_cond_schedule:
+ assert self.model.conditioning_key != 'hybrid'
+ tc = self.cond_ids[ts].to(cond.device)
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+ img, x0_partial = self.p_sample(img, cond, ts,
+ clip_denoised=self.clip_denoised,
+ quantize_denoised=quantize_denoised, return_x0=True,
+ temperature=temperature[i], noise_dropout=noise_dropout,
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.q_sample(x0, ts)
+ img = img_orig * mask + (1. - mask) * img
+
+ if i % log_every_t == 0 or i == timesteps - 1:
+ intermediates.append(x0_partial)
+ if callback: callback(i)
+ if img_callback: img_callback(img, i)
+ return img, intermediates
+
+ @torch.no_grad()
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, img_callback=None, start_T=None,
+ log_every_t=None):
+
+ if not log_every_t:
+ log_every_t = self.log_every_t
+ device = self.betas.device
+ b = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=device)
+ else:
+ img = x_T
+
+ intermediates = [img]
+ if timesteps is None:
+ timesteps = self.num_timesteps
+
+ if start_T is not None:
+ timesteps = min(timesteps, start_T)
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
+ range(0, timesteps))
+
+ if mask is not None:
+ assert x0 is not None
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
+
+ for i in iterator:
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
+ if self.shorten_cond_schedule:
+ assert self.model.conditioning_key != 'hybrid'
+ tc = self.cond_ids[ts].to(cond.device)
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+ img = self.p_sample(img, cond, ts,
+ clip_denoised=self.clip_denoised,
+ quantize_denoised=quantize_denoised)
+ if mask is not None:
+ img_orig = self.q_sample(x0, ts)
+ img = img_orig * mask + (1. - mask) * img
+
+ if i % log_every_t == 0 or i == timesteps - 1:
+ intermediates.append(img)
+ if callback: callback(i)
+ if img_callback: img_callback(img, i)
+
+ if return_intermediates:
+ return img, intermediates
+ return img
+
+ @torch.no_grad()
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
+ verbose=True, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, shape=None, **kwargs):
+ if shape is None:
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
+ if cond is not None:
+ if isinstance(cond, dict):
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+ else:
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+ return self.p_sample_loop(cond,
+ shape,
+ return_intermediates=return_intermediates, x_T=x_T,
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
+ mask=mask, x0=x0)
+
+ @torch.no_grad()
+ def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
+ if ddim:
+ ddim_sampler = DDIMSampler(self)
+ shape = (self.channels, self.image_size, self.image_size)
+ samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
+ shape, cond, verbose=False, **kwargs)
+
+ else:
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
+ return_intermediates=True, **kwargs)
+
+ return samples, intermediates
+
+ @torch.no_grad()
+ def get_unconditional_conditioning(self, batch_size, null_label=None):
+ if null_label is not None:
+ xc = null_label
+ if isinstance(xc, ListConfig):
+ xc = list(xc)
+ if isinstance(xc, dict) or isinstance(xc, list):
+ c = self.get_learned_conditioning(xc)
+ else:
+ if hasattr(xc, "to"):
+ xc = xc.to(self.device)
+ c = self.get_learned_conditioning(xc)
+ else:
+ if self.cond_stage_key in ["class_label", "cls"]:
+ xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
+ return self.get_learned_conditioning(xc)
+ else:
+ raise NotImplementedError("todo")
+ if isinstance(c, list): # in case the encoder gives us a list
+ for i in range(len(c)):
+ c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
+ else:
+ c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
+ return c
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
+ use_ema_scope=True,
+ **kwargs):
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
+ use_ddim = ddim_steps is not None
+
+ log = dict()
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
+ return_first_stage_outputs=True,
+ force_c_encode=True,
+ return_original_cond=True,
+ bs=N)
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ log["inputs"] = x
+ log["reconstruction"] = xrec
+ if self.model.conditioning_key is not None:
+ if hasattr(self.cond_stage_model, "decode"):
+ xc = self.cond_stage_model.decode(c)
+ log["conditioning"] = xc
+ elif self.cond_stage_key in ["caption", "txt"]:
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
+ log["conditioning"] = xc
+ elif self.cond_stage_key in ['class_label', "cls"]:
+ try:
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
+ log['conditioning'] = xc
+ except KeyError:
+ # probably no "human_label" in batch
+ pass
+ elif isimage(xc):
+ log["conditioning"] = xc
+ if ismap(xc):
+ log["original_conditioning"] = self.to_rgb(xc)
+
+ if plot_diffusion_rows:
+ # get diffusion row
+ diffusion_row = list()
+ z_start = z[:n_row]
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(z_start)
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+ diffusion_row.append(self.decode_first_stage(z_noisy))
+
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+ log["diffusion_row"] = diffusion_grid
+
+ if sample:
+ # get denoise row
+ with ema_scope("Sampling"):
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+ ddim_steps=ddim_steps, eta=ddim_eta)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+ x_samples = self.decode_first_stage(samples)
+ log["samples"] = x_samples
+ if plot_denoise_rows:
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+ log["denoise_row"] = denoise_grid
+
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
+ self.first_stage_model, IdentityFirstStage):
+ # also display when quantizing x0 while sampling
+ with ema_scope("Plotting Quantized Denoised"):
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+ ddim_steps=ddim_steps, eta=ddim_eta,
+ quantize_denoised=True)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
+ # quantize_denoised=True)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_x0_quantized"] = x_samples
+
+ if unconditional_guidance_scale > 1.0:
+ uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
+ if self.model.conditioning_key == "crossattn-adm":
+ uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
+ with ema_scope("Sampling with classifier-free guidance"):
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+ ddim_steps=ddim_steps, eta=ddim_eta,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=uc,
+ )
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
+
+ if inpaint:
+ # make a simple center square
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
+ mask = torch.ones(N, h, w).to(self.device)
+ # zeros will be filled in
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
+ mask = mask[:, None, ...]
+ with ema_scope("Plotting Inpaint"):
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_inpainting"] = x_samples
+ log["mask"] = mask
+
+ # outpaint
+ mask = 1. - mask
+ with ema_scope("Plotting Outpaint"):
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_outpainting"] = x_samples
+
+ if plot_progressive_rows:
+ with ema_scope("Plotting Progressives"):
+ img, progressives = self.progressive_denoising(c,
+ shape=(self.channels, self.image_size, self.image_size),
+ batch_size=N)
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
+ log["progressive_row"] = prog_row
+
+ if return_keys:
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+ return log
+ else:
+ return {key: log[key] for key in return_keys}
+ return log
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ params = list(self.model.parameters())
+ if self.cond_stage_trainable:
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
+ params = params + list(self.cond_stage_model.parameters())
+ if self.learn_logvar:
+ print('Diffusion model optimizing logvar')
+ params.append(self.logvar)
+ opt = torch.optim.AdamW(params, lr=lr)
+ if self.use_scheduler:
+ assert 'target' in self.scheduler_config
+ scheduler = instantiate_from_config(self.scheduler_config)
+
+ print("Setting up LambdaLR scheduler...")
+ scheduler = [
+ {
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ }]
+ return [opt], scheduler
+ return opt
+
+ @torch.no_grad()
+ def to_rgb(self, x):
+ x = x.float()
+ if not hasattr(self, "colorize"):
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
+ x = nn.functional.conv2d(x, weight=self.colorize)
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
+ return x
+
+
+class DiffusionWrapper(pl.LightningModule):
+ def __init__(self, diff_model_config, conditioning_key):
+ super().__init__()
+ self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
+ self.diffusion_model = instantiate_from_config(diff_model_config)
+ self.conditioning_key = conditioning_key
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
+
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
+ if self.conditioning_key is None:
+ out = self.diffusion_model(x, t)
+ elif self.conditioning_key == 'concat':
+ xc = torch.cat([x] + c_concat, dim=1)
+ out = self.diffusion_model(xc, t)
+ elif self.conditioning_key == 'crossattn':
+ if not self.sequential_cross_attn:
+ cc = torch.cat(c_crossattn, 1)
+ else:
+ cc = c_crossattn
+ out = self.diffusion_model(x, t, context=cc)
+ elif self.conditioning_key == 'hybrid':
+ xc = torch.cat([x] + c_concat, dim=1)
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(xc, t, context=cc)
+ elif self.conditioning_key == 'hybrid-adm':
+ assert c_adm is not None
+ xc = torch.cat([x] + c_concat, dim=1)
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(xc, t, context=cc, y=c_adm)
+ elif self.conditioning_key == 'crossattn-adm':
+ assert c_adm is not None
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(x, t, context=cc, y=c_adm)
+ elif self.conditioning_key == 'adm':
+ cc = c_crossattn[0]
+ out = self.diffusion_model(x, t, y=cc)
+ else:
+ raise NotImplementedError()
+
+ return out
+
+
+class LatentUpscaleDiffusion(LatentDiffusion):
+ def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
+ super().__init__(*args, **kwargs)
+ # assumes that neither the cond_stage nor the low_scale_model contain trainable params
+ assert not self.cond_stage_trainable
+ self.instantiate_low_stage(low_scale_config)
+ self.low_scale_key = low_scale_key
+ self.noise_level_key = noise_level_key
+
+ def instantiate_low_stage(self, config):
+ model = instantiate_from_config(config)
+ self.low_scale_model = model.eval()
+ self.low_scale_model.train = disabled_train
+ for param in self.low_scale_model.parameters():
+ param.requires_grad = False
+
+ @torch.no_grad()
+ def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
+ if not log_mode:
+ z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
+ else:
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
+ force_c_encode=True, return_original_cond=True, bs=bs)
+ x_low = batch[self.low_scale_key][:bs]
+ x_low = rearrange(x_low, 'b h w c -> b c h w')
+ x_low = x_low.to(memory_format=torch.contiguous_format).float()
+ zx, noise_level = self.low_scale_model(x_low)
+ if self.noise_level_key is not None:
+ # get noise level from batch instead, e.g. when extracting a custom noise level for bsr
+ raise NotImplementedError('TODO')
+
+ all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
+ if log_mode:
+ # TODO: maybe disable if too expensive
+ x_low_rec = self.low_scale_model.decode(zx)
+ return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
+ return z, all_conds
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
+ plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
+ unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
+ **kwargs):
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
+ use_ddim = ddim_steps is not None
+
+ log = dict()
+ z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
+ log_mode=True)
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ log["inputs"] = x
+ log["reconstruction"] = xrec
+ log["x_lr"] = x_low
+ log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
+ if self.model.conditioning_key is not None:
+ if hasattr(self.cond_stage_model, "decode"):
+ xc = self.cond_stage_model.decode(c)
+ log["conditioning"] = xc
+ elif self.cond_stage_key in ["caption", "txt"]:
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
+ log["conditioning"] = xc
+ elif self.cond_stage_key in ['class_label', 'cls']:
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
+ log['conditioning'] = xc
+ elif isimage(xc):
+ log["conditioning"] = xc
+ if ismap(xc):
+ log["original_conditioning"] = self.to_rgb(xc)
+
+ if plot_diffusion_rows:
+ # get diffusion row
+ diffusion_row = list()
+ z_start = z[:n_row]
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(z_start)
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+ diffusion_row.append(self.decode_first_stage(z_noisy))
+
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+ log["diffusion_row"] = diffusion_grid
+
+ if sample:
+ # get denoise row
+ with ema_scope("Sampling"):
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+ ddim_steps=ddim_steps, eta=ddim_eta)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+ x_samples = self.decode_first_stage(samples)
+ log["samples"] = x_samples
+ if plot_denoise_rows:
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+ log["denoise_row"] = denoise_grid
+
+ if unconditional_guidance_scale > 1.0:
+ uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
+ # TODO explore better "unconditional" choices for the other keys
+ # maybe guide away from empty text label and highest noise level and maximally degraded zx?
+ uc = dict()
+ for k in c:
+ if k == "c_crossattn":
+ assert isinstance(c[k], list) and len(c[k]) == 1
+ uc[k] = [uc_tmp]
+ elif k == "c_adm": # todo: only run with text-based guidance?
+ assert isinstance(c[k], torch.Tensor)
+ #uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
+ uc[k] = c[k]
+ elif isinstance(c[k], list):
+ uc[k] = [c[k][i] for i in range(len(c[k]))]
+ else:
+ uc[k] = c[k]
+
+ with ema_scope("Sampling with classifier-free guidance"):
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+ ddim_steps=ddim_steps, eta=ddim_eta,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=uc,
+ )
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
+
+ if plot_progressive_rows:
+ with ema_scope("Plotting Progressives"):
+ img, progressives = self.progressive_denoising(c,
+ shape=(self.channels, self.image_size, self.image_size),
+ batch_size=N)
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
+ log["progressive_row"] = prog_row
+
+ return log
+
+
+class LatentFinetuneDiffusion(LatentDiffusion):
+ """
+ Basis for different finetunas, such as inpainting or depth2image
+ To disable finetuning mode, set finetune_keys to None
+ """
+
+ def __init__(self,
+ concat_keys: tuple,
+ finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
+ "model_ema.diffusion_modelinput_blocks00weight"
+ ),
+ keep_finetune_dims=4,
+ # if model was trained without concat mode before and we would like to keep these channels
+ c_concat_log_start=None, # to log reconstruction of c_concat codes
+ c_concat_log_end=None,
+ *args, **kwargs
+ ):
+ ckpt_path = kwargs.pop("ckpt_path", None)
+ ignore_keys = kwargs.pop("ignore_keys", list())
+ super().__init__(*args, **kwargs)
+ self.finetune_keys = finetune_keys
+ self.concat_keys = concat_keys
+ self.keep_dims = keep_finetune_dims
+ self.c_concat_log_start = c_concat_log_start
+ self.c_concat_log_end = c_concat_log_end
+ if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
+ if exists(ckpt_path):
+ self.init_from_ckpt(ckpt_path, ignore_keys)
+
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ sd = torch.load(path, map_location="cpu")
+ if "state_dict" in list(sd.keys()):
+ sd = sd["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+
+ # make it explicit, finetune by including extra input channels
+ if exists(self.finetune_keys) and k in self.finetune_keys:
+ new_entry = None
+ for name, param in self.named_parameters():
+ if name in self.finetune_keys:
+ print(
+ f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
+ new_entry = torch.zeros_like(param) # zero init
+ assert exists(new_entry), 'did not find matching parameter to modify'
+ new_entry[:, :self.keep_dims, ...] = sd[k]
+ sd[k] = new_entry
+
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+ sd, strict=False)
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ print(f"Missing Keys: {missing}")
+ if len(unexpected) > 0:
+ print(f"Unexpected Keys: {unexpected}")
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
+ use_ema_scope=True,
+ **kwargs):
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
+ use_ddim = ddim_steps is not None
+
+ log = dict()
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
+ c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ log["inputs"] = x
+ log["reconstruction"] = xrec
+ if self.model.conditioning_key is not None:
+ if hasattr(self.cond_stage_model, "decode"):
+ xc = self.cond_stage_model.decode(c)
+ log["conditioning"] = xc
+ elif self.cond_stage_key in ["caption", "txt"]:
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
+ log["conditioning"] = xc
+ elif self.cond_stage_key in ['class_label', 'cls']:
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
+ log['conditioning'] = xc
+ elif isimage(xc):
+ log["conditioning"] = xc
+ if ismap(xc):
+ log["original_conditioning"] = self.to_rgb(xc)
+
+ if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
+ log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
+
+ if plot_diffusion_rows:
+ # get diffusion row
+ diffusion_row = list()
+ z_start = z[:n_row]
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(z_start)
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+ diffusion_row.append(self.decode_first_stage(z_noisy))
+
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+ log["diffusion_row"] = diffusion_grid
+
+ if sample:
+ # get denoise row
+ with ema_scope("Sampling"):
+ samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
+ batch_size=N, ddim=use_ddim,
+ ddim_steps=ddim_steps, eta=ddim_eta)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+ x_samples = self.decode_first_stage(samples)
+ log["samples"] = x_samples
+ if plot_denoise_rows:
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+ log["denoise_row"] = denoise_grid
+
+ if unconditional_guidance_scale > 1.0:
+ uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
+ uc_cat = c_cat
+ uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
+ with ema_scope("Sampling with classifier-free guidance"):
+ samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
+ batch_size=N, ddim=use_ddim,
+ ddim_steps=ddim_steps, eta=ddim_eta,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=uc_full,
+ )
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
+
+ return log
+
+
+class LatentInpaintDiffusion(LatentFinetuneDiffusion):
+ """
+ can either run as pure inpainting model (only concat mode) or with mixed conditionings,
+ e.g. mask as concat and text via cross-attn.
+ To disable finetuning mode, set finetune_keys to None
+ """
+
+ def __init__(self,
+ concat_keys=("mask", "masked_image"),
+ masked_image_key="masked_image",
+ *args, **kwargs
+ ):
+ super().__init__(concat_keys, *args, **kwargs)
+ self.masked_image_key = masked_image_key
+ assert self.masked_image_key in concat_keys
+
+ @torch.no_grad()
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
+ # note: restricted to non-trainable encoders currently
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
+ force_c_encode=True, return_original_cond=True, bs=bs)
+
+ assert exists(self.concat_keys)
+ c_cat = list()
+ for ck in self.concat_keys:
+ cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
+ if bs is not None:
+ cc = cc[:bs]
+ cc = cc.to(self.device)
+ bchw = z.shape
+ if ck != self.masked_image_key:
+ cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
+ else:
+ cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
+ c_cat.append(cc)
+ c_cat = torch.cat(c_cat, dim=1)
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
+ if return_first_stage_outputs:
+ return z, all_conds, x, xrec, xc
+ return z, all_conds
+
+ @torch.no_grad()
+ def log_images(self, *args, **kwargs):
+ log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
+ log["masked_image"] = rearrange(args[0]["masked_image"],
+ 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
+ return log
+
+
+class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
+ """
+ condition on monocular depth estimation
+ """
+
+ def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
+ super().__init__(concat_keys=concat_keys, *args, **kwargs)
+ self.depth_model = instantiate_from_config(depth_stage_config)
+ self.depth_stage_key = concat_keys[0]
+
+ @torch.no_grad()
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
+ # note: restricted to non-trainable encoders currently
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
+ force_c_encode=True, return_original_cond=True, bs=bs)
+
+ assert exists(self.concat_keys)
+ assert len(self.concat_keys) == 1
+ c_cat = list()
+ for ck in self.concat_keys:
+ cc = batch[ck]
+ if bs is not None:
+ cc = cc[:bs]
+ cc = cc.to(self.device)
+ cc = self.depth_model(cc)
+ cc = torch.nn.functional.interpolate(
+ cc,
+ size=z.shape[2:],
+ mode="bicubic",
+ align_corners=False,
+ )
+
+ depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
+ keepdim=True)
+ cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
+ c_cat.append(cc)
+ c_cat = torch.cat(c_cat, dim=1)
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
+ if return_first_stage_outputs:
+ return z, all_conds, x, xrec, xc
+ return z, all_conds
+
+ @torch.no_grad()
+ def log_images(self, *args, **kwargs):
+ log = super().log_images(*args, **kwargs)
+ depth = self.depth_model(args[0][self.depth_stage_key])
+ depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
+ torch.amax(depth, dim=[1, 2, 3], keepdim=True)
+ log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
+ return log
+
+
+class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
+ """
+ condition on low-res image (and optionally on some spatial noise augmentation)
+ """
+ def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
+ low_scale_config=None, low_scale_key=None, *args, **kwargs):
+ super().__init__(concat_keys=concat_keys, *args, **kwargs)
+ self.reshuffle_patch_size = reshuffle_patch_size
+ self.low_scale_model = None
+ if low_scale_config is not None:
+ print("Initializing a low-scale model")
+ assert exists(low_scale_key)
+ self.instantiate_low_stage(low_scale_config)
+ self.low_scale_key = low_scale_key
+
+ def instantiate_low_stage(self, config):
+ model = instantiate_from_config(config)
+ self.low_scale_model = model.eval()
+ self.low_scale_model.train = disabled_train
+ for param in self.low_scale_model.parameters():
+ param.requires_grad = False
+
+ @torch.no_grad()
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
+ # note: restricted to non-trainable encoders currently
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
+ force_c_encode=True, return_original_cond=True, bs=bs)
+
+ assert exists(self.concat_keys)
+ assert len(self.concat_keys) == 1
+ # optionally make spatial noise_level here
+ c_cat = list()
+ noise_level = None
+ for ck in self.concat_keys:
+ cc = batch[ck]
+ cc = rearrange(cc, 'b h w c -> b c h w')
+ if exists(self.reshuffle_patch_size):
+ assert isinstance(self.reshuffle_patch_size, int)
+ cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
+ p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
+ if bs is not None:
+ cc = cc[:bs]
+ cc = cc.to(self.device)
+ if exists(self.low_scale_model) and ck == self.low_scale_key:
+ cc, noise_level = self.low_scale_model(cc)
+ c_cat.append(cc)
+ c_cat = torch.cat(c_cat, dim=1)
+ if exists(noise_level):
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
+ else:
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
+ if return_first_stage_outputs:
+ return z, all_conds, x, xrec, xc
+ return z, all_conds
+
+ @torch.no_grad()
+ def log_images(self, *args, **kwargs):
+ log = super().log_images(*args, **kwargs)
+ log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
+ return log
diff --git a/ldm/models/diffusion/dpm_solver/__init__.py b/ldm/models/diffusion/dpm_solver/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..7427f38c07530afbab79154ea8aaf88c4bf70a08
--- /dev/null
+++ b/ldm/models/diffusion/dpm_solver/__init__.py
@@ -0,0 +1 @@
+from .sampler import DPMSolverSampler
\ No newline at end of file
diff --git a/ldm/models/diffusion/dpm_solver/dpm_solver.py b/ldm/models/diffusion/dpm_solver/dpm_solver.py
new file mode 100644
index 0000000000000000000000000000000000000000..095e5ba3ce0b1aa7f4b3f1e2e5d8fff7cfe6dc8c
--- /dev/null
+++ b/ldm/models/diffusion/dpm_solver/dpm_solver.py
@@ -0,0 +1,1154 @@
+import torch
+import torch.nn.functional as F
+import math
+from tqdm import tqdm
+
+
+class NoiseScheduleVP:
+ def __init__(
+ self,
+ schedule='discrete',
+ betas=None,
+ alphas_cumprod=None,
+ continuous_beta_0=0.1,
+ continuous_beta_1=20.,
+ ):
+ """Create a wrapper class for the forward SDE (VP type).
+ ***
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
+ ***
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
+ log_alpha_t = self.marginal_log_mean_coeff(t)
+ sigma_t = self.marginal_std(t)
+ lambda_t = self.marginal_lambda(t)
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
+ t = self.inverse_lambda(lambda_t)
+ ===============================================================
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
+ 1. For discrete-time DPMs:
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
+ t_i = (i + 1) / N
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
+ Args:
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
+ Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
+ and
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
+ 2. For continuous-time DPMs:
+ We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
+ schedule are the default settings in DDPM and improved-DDPM:
+ Args:
+ beta_min: A `float` number. The smallest beta for the linear schedule.
+ beta_max: A `float` number. The largest beta for the linear schedule.
+ cosine_s: A `float` number. The hyperparameter in the cosine schedule.
+ cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
+ T: A `float` number. The ending time of the forward process.
+ ===============================================================
+ Args:
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
+ 'linear' or 'cosine' for continuous-time DPMs.
+ Returns:
+ A wrapper object of the forward SDE (VP type).
+
+ ===============================================================
+ Example:
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
+ # For continuous-time DPMs (VPSDE), linear schedule:
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
+ """
+
+ if schedule not in ['discrete', 'linear', 'cosine']:
+ raise ValueError(
+ "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
+ schedule))
+
+ self.schedule = schedule
+ if schedule == 'discrete':
+ if betas is not None:
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
+ else:
+ assert alphas_cumprod is not None
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
+ self.total_N = len(log_alphas)
+ self.T = 1.
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
+ self.log_alpha_array = log_alphas.reshape((1, -1,))
+ else:
+ self.total_N = 1000
+ self.beta_0 = continuous_beta_0
+ self.beta_1 = continuous_beta_1
+ self.cosine_s = 0.008
+ self.cosine_beta_max = 999.
+ self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
+ 1. + self.cosine_s) / math.pi - self.cosine_s
+ self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
+ self.schedule = schedule
+ if schedule == 'cosine':
+ # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
+ # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
+ self.T = 0.9946
+ else:
+ self.T = 1.
+
+ def marginal_log_mean_coeff(self, t):
+ """
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
+ """
+ if self.schedule == 'discrete':
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
+ self.log_alpha_array.to(t.device)).reshape((-1))
+ elif self.schedule == 'linear':
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
+ elif self.schedule == 'cosine':
+ log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
+ log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
+ return log_alpha_t
+
+ def marginal_alpha(self, t):
+ """
+ Compute alpha_t of a given continuous-time label t in [0, T].
+ """
+ return torch.exp(self.marginal_log_mean_coeff(t))
+
+ def marginal_std(self, t):
+ """
+ Compute sigma_t of a given continuous-time label t in [0, T].
+ """
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
+
+ def marginal_lambda(self, t):
+ """
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
+ """
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
+ return log_mean_coeff - log_std
+
+ def inverse_lambda(self, lamb):
+ """
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
+ """
+ if self.schedule == 'linear':
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
+ Delta = self.beta_0 ** 2 + tmp
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
+ elif self.schedule == 'discrete':
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
+ torch.flip(self.t_array.to(lamb.device), [1]))
+ return t.reshape((-1,))
+ else:
+ log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
+ t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
+ 1. + self.cosine_s) / math.pi - self.cosine_s
+ t = t_fn(log_alpha)
+ return t
+
+
+def model_wrapper(
+ model,
+ noise_schedule,
+ model_type="noise",
+ model_kwargs={},
+ guidance_type="uncond",
+ condition=None,
+ unconditional_condition=None,
+ guidance_scale=1.,
+ classifier_fn=None,
+ classifier_kwargs={},
+):
+ """Create a wrapper function for the noise prediction model.
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
+ We support four types of the diffusion model by setting `model_type`:
+ 1. "noise": noise prediction model. (Trained by predicting noise).
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
+ arXiv preprint arXiv:2202.00512 (2022).
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
+ arXiv preprint arXiv:2210.02303 (2022).
+
+ 4. "score": marginal score function. (Trained by denoising score matching).
+ Note that the score function and the noise prediction model follows a simple relationship:
+ ```
+ noise(x_t, t) = -sigma_t * score(x_t, t)
+ ```
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
+ 1. "uncond": unconditional sampling by DPMs.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
+ ``
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
+ ``
+ The input `classifier_fn` has the following format:
+ ``
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
+ ``
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
+ ``
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
+ arXiv preprint arXiv:2207.12598 (2022).
+
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
+ or continuous-time labels (i.e. epsilon to T).
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
+ ``
+ def model_fn(x, t_continuous) -> noise:
+ t_input = get_model_input_time(t_continuous)
+ return noise_pred(model, x, t_input, **model_kwargs)
+ ``
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
+ ===============================================================
+ Args:
+ model: A diffusion model with the corresponding format described above.
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
+ model_type: A `str`. The parameterization type of the diffusion model.
+ "noise" or "x_start" or "v" or "score".
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
+ guidance_type: A `str`. The type of the guidance for sampling.
+ "uncond" or "classifier" or "classifier-free".
+ condition: A pytorch tensor. The condition for the guided sampling.
+ Only used for "classifier" or "classifier-free" guidance type.
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
+ Only used for "classifier-free" guidance type.
+ guidance_scale: A `float`. The scale for the guided sampling.
+ classifier_fn: A classifier function. Only used for the classifier guidance.
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
+ Returns:
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
+ """
+
+ def get_model_input_time(t_continuous):
+ """
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
+ For continuous-time DPMs, we just use `t_continuous`.
+ """
+ if noise_schedule.schedule == 'discrete':
+ return (t_continuous - 1. / noise_schedule.total_N) * 1000.
+ else:
+ return t_continuous
+
+ def noise_pred_fn(x, t_continuous, cond=None):
+ if t_continuous.reshape((-1,)).shape[0] == 1:
+ t_continuous = t_continuous.expand((x.shape[0]))
+ t_input = get_model_input_time(t_continuous)
+ if cond is None:
+ output = model(x, t_input, **model_kwargs)
+ else:
+ output = model(x, t_input, cond, **model_kwargs)
+ if model_type == "noise":
+ return output
+ elif model_type == "x_start":
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+ dims = x.dim()
+ return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
+ elif model_type == "v":
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+ dims = x.dim()
+ return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
+ elif model_type == "score":
+ sigma_t = noise_schedule.marginal_std(t_continuous)
+ dims = x.dim()
+ return -expand_dims(sigma_t, dims) * output
+
+ def cond_grad_fn(x, t_input):
+ """
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
+ """
+ with torch.enable_grad():
+ x_in = x.detach().requires_grad_(True)
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
+
+ def model_fn(x, t_continuous):
+ """
+ The noise predicition model function that is used for DPM-Solver.
+ """
+ if t_continuous.reshape((-1,)).shape[0] == 1:
+ t_continuous = t_continuous.expand((x.shape[0]))
+ if guidance_type == "uncond":
+ return noise_pred_fn(x, t_continuous)
+ elif guidance_type == "classifier":
+ assert classifier_fn is not None
+ t_input = get_model_input_time(t_continuous)
+ cond_grad = cond_grad_fn(x, t_input)
+ sigma_t = noise_schedule.marginal_std(t_continuous)
+ noise = noise_pred_fn(x, t_continuous)
+ return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
+ elif guidance_type == "classifier-free":
+ if guidance_scale == 1. or unconditional_condition is None:
+ return noise_pred_fn(x, t_continuous, cond=condition)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t_continuous] * 2)
+ c_in = torch.cat([unconditional_condition, condition])
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
+
+ assert model_type in ["noise", "x_start", "v"]
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
+ return model_fn
+
+
+class DPM_Solver:
+ def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
+ """Construct a DPM-Solver.
+ We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
+ If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
+ If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
+ In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
+ The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
+ Args:
+ model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
+ ``
+ def model_fn(x, t_continuous):
+ return noise
+ ``
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
+ predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
+ thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
+ max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
+
+ [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
+ """
+ self.model = model_fn
+ self.noise_schedule = noise_schedule
+ self.predict_x0 = predict_x0
+ self.thresholding = thresholding
+ self.max_val = max_val
+
+ def noise_prediction_fn(self, x, t):
+ """
+ Return the noise prediction model.
+ """
+ return self.model(x, t)
+
+ def data_prediction_fn(self, x, t):
+ """
+ Return the data prediction model (with thresholding).
+ """
+ noise = self.noise_prediction_fn(x, t)
+ dims = x.dim()
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
+ x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
+ if self.thresholding:
+ p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
+ s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
+ x0 = torch.clamp(x0, -s, s) / s
+ return x0
+
+ def model_fn(self, x, t):
+ """
+ Convert the model to the noise prediction model or the data prediction model.
+ """
+ if self.predict_x0:
+ return self.data_prediction_fn(x, t)
+ else:
+ return self.noise_prediction_fn(x, t)
+
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
+ """Compute the intermediate time steps for sampling.
+ Args:
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
+ - 'logSNR': uniform logSNR for the time steps.
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
+ t_T: A `float`. The starting time of the sampling (default is T).
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
+ N: A `int`. The total number of the spacing of the time steps.
+ device: A torch device.
+ Returns:
+ A pytorch tensor of the time steps, with the shape (N + 1,).
+ """
+ if skip_type == 'logSNR':
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
+ elif skip_type == 'time_uniform':
+ return torch.linspace(t_T, t_0, N + 1).to(device)
+ elif skip_type == 'time_quadratic':
+ t_order = 2
+ t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
+ return t
+ else:
+ raise ValueError(
+ "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
+
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
+ """
+ Get the order of each step for sampling by the singlestep DPM-Solver.
+ We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
+ Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
+ - If order == 1:
+ We take `steps` of DPM-Solver-1 (i.e. DDIM).
+ - If order == 2:
+ - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
+ - If steps % 2 == 0, we use K steps of DPM-Solver-2.
+ - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
+ - If order == 3:
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
+ - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
+ - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
+ - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
+ ============================================
+ Args:
+ order: A `int`. The max order for the solver (2 or 3).
+ steps: A `int`. The total number of function evaluations (NFE).
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
+ - 'logSNR': uniform logSNR for the time steps.
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
+ t_T: A `float`. The starting time of the sampling (default is T).
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
+ device: A torch device.
+ Returns:
+ orders: A list of the solver order of each step.
+ """
+ if order == 3:
+ K = steps // 3 + 1
+ if steps % 3 == 0:
+ orders = [3, ] * (K - 2) + [2, 1]
+ elif steps % 3 == 1:
+ orders = [3, ] * (K - 1) + [1]
+ else:
+ orders = [3, ] * (K - 1) + [2]
+ elif order == 2:
+ if steps % 2 == 0:
+ K = steps // 2
+ orders = [2, ] * K
+ else:
+ K = steps // 2 + 1
+ orders = [2, ] * (K - 1) + [1]
+ elif order == 1:
+ K = 1
+ orders = [1, ] * steps
+ else:
+ raise ValueError("'order' must be '1' or '2' or '3'.")
+ if skip_type == 'logSNR':
+ # To reproduce the results in DPM-Solver paper
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
+ else:
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
+ torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
+ return timesteps_outer, orders
+
+ def denoise_to_zero_fn(self, x, s):
+ """
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
+ """
+ return self.data_prediction_fn(x, s)
+
+ def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
+ """
+ DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
+ return_intermediate: A `bool`. If true, also return the model value at time `s`.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ ns = self.noise_schedule
+ dims = x.dim()
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
+ h = lambda_t - lambda_s
+ log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
+ sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ if self.predict_x0:
+ phi_1 = torch.expm1(-h)
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ x_t = (
+ expand_dims(sigma_t / sigma_s, dims) * x
+ - expand_dims(alpha_t * phi_1, dims) * model_s
+ )
+ if return_intermediate:
+ return x_t, {'model_s': model_s}
+ else:
+ return x_t
+ else:
+ phi_1 = torch.expm1(h)
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+ - expand_dims(sigma_t * phi_1, dims) * model_s
+ )
+ if return_intermediate:
+ return x_t, {'model_s': model_s}
+ else:
+ return x_t
+
+ def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
+ solver_type='dpm_solver'):
+ """
+ Singlestep solver DPM-Solver-2 from time `s` to time `t`.
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ r1: A `float`. The hyperparameter of the second-order solver.
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
+ return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if solver_type not in ['dpm_solver', 'taylor']:
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
+ if r1 is None:
+ r1 = 0.5
+ ns = self.noise_schedule
+ dims = x.dim()
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
+ h = lambda_t - lambda_s
+ lambda_s1 = lambda_s + r1 * h
+ s1 = ns.inverse_lambda(lambda_s1)
+ log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
+ s1), ns.marginal_log_mean_coeff(t)
+ sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
+ alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
+
+ if self.predict_x0:
+ phi_11 = torch.expm1(-r1 * h)
+ phi_1 = torch.expm1(-h)
+
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ x_s1 = (
+ expand_dims(sigma_s1 / sigma_s, dims) * x
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
+ )
+ model_s1 = self.model_fn(x_s1, s1)
+ if solver_type == 'dpm_solver':
+ x_t = (
+ expand_dims(sigma_t / sigma_s, dims) * x
+ - expand_dims(alpha_t * phi_1, dims) * model_s
+ - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
+ )
+ elif solver_type == 'taylor':
+ x_t = (
+ expand_dims(sigma_t / sigma_s, dims) * x
+ - expand_dims(alpha_t * phi_1, dims) * model_s
+ + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
+ model_s1 - model_s)
+ )
+ else:
+ phi_11 = torch.expm1(r1 * h)
+ phi_1 = torch.expm1(h)
+
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ x_s1 = (
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
+ )
+ model_s1 = self.model_fn(x_s1, s1)
+ if solver_type == 'dpm_solver':
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+ - expand_dims(sigma_t * phi_1, dims) * model_s
+ - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
+ )
+ elif solver_type == 'taylor':
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+ - expand_dims(sigma_t * phi_1, dims) * model_s
+ - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
+ )
+ if return_intermediate:
+ return x_t, {'model_s': model_s, 'model_s1': model_s1}
+ else:
+ return x_t
+
+ def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
+ return_intermediate=False, solver_type='dpm_solver'):
+ """
+ Singlestep solver DPM-Solver-3 from time `s` to time `t`.
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ r1: A `float`. The hyperparameter of the third-order solver.
+ r2: A `float`. The hyperparameter of the third-order solver.
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
+ model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
+ If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if solver_type not in ['dpm_solver', 'taylor']:
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
+ if r1 is None:
+ r1 = 1. / 3.
+ if r2 is None:
+ r2 = 2. / 3.
+ ns = self.noise_schedule
+ dims = x.dim()
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
+ h = lambda_t - lambda_s
+ lambda_s1 = lambda_s + r1 * h
+ lambda_s2 = lambda_s + r2 * h
+ s1 = ns.inverse_lambda(lambda_s1)
+ s2 = ns.inverse_lambda(lambda_s2)
+ log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
+ s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
+ sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
+ s2), ns.marginal_std(t)
+ alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
+
+ if self.predict_x0:
+ phi_11 = torch.expm1(-r1 * h)
+ phi_12 = torch.expm1(-r2 * h)
+ phi_1 = torch.expm1(-h)
+ phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
+ phi_2 = phi_1 / h + 1.
+ phi_3 = phi_2 / h - 0.5
+
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ if model_s1 is None:
+ x_s1 = (
+ expand_dims(sigma_s1 / sigma_s, dims) * x
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
+ )
+ model_s1 = self.model_fn(x_s1, s1)
+ x_s2 = (
+ expand_dims(sigma_s2 / sigma_s, dims) * x
+ - expand_dims(alpha_s2 * phi_12, dims) * model_s
+ + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
+ )
+ model_s2 = self.model_fn(x_s2, s2)
+ if solver_type == 'dpm_solver':
+ x_t = (
+ expand_dims(sigma_t / sigma_s, dims) * x
+ - expand_dims(alpha_t * phi_1, dims) * model_s
+ + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
+ )
+ elif solver_type == 'taylor':
+ D1_0 = (1. / r1) * (model_s1 - model_s)
+ D1_1 = (1. / r2) * (model_s2 - model_s)
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
+ x_t = (
+ expand_dims(sigma_t / sigma_s, dims) * x
+ - expand_dims(alpha_t * phi_1, dims) * model_s
+ + expand_dims(alpha_t * phi_2, dims) * D1
+ - expand_dims(alpha_t * phi_3, dims) * D2
+ )
+ else:
+ phi_11 = torch.expm1(r1 * h)
+ phi_12 = torch.expm1(r2 * h)
+ phi_1 = torch.expm1(h)
+ phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
+ phi_2 = phi_1 / h - 1.
+ phi_3 = phi_2 / h - 0.5
+
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ if model_s1 is None:
+ x_s1 = (
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
+ )
+ model_s1 = self.model_fn(x_s1, s1)
+ x_s2 = (
+ expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
+ - expand_dims(sigma_s2 * phi_12, dims) * model_s
+ - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
+ )
+ model_s2 = self.model_fn(x_s2, s2)
+ if solver_type == 'dpm_solver':
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+ - expand_dims(sigma_t * phi_1, dims) * model_s
+ - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
+ )
+ elif solver_type == 'taylor':
+ D1_0 = (1. / r1) * (model_s1 - model_s)
+ D1_1 = (1. / r2) * (model_s2 - model_s)
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+ - expand_dims(sigma_t * phi_1, dims) * model_s
+ - expand_dims(sigma_t * phi_2, dims) * D1
+ - expand_dims(sigma_t * phi_3, dims) * D2
+ )
+
+ if return_intermediate:
+ return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
+ else:
+ return x_t
+
+ def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
+ """
+ Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if solver_type not in ['dpm_solver', 'taylor']:
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
+ ns = self.noise_schedule
+ dims = x.dim()
+ model_prev_1, model_prev_0 = model_prev_list
+ t_prev_1, t_prev_0 = t_prev_list
+ lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
+ t_prev_0), ns.marginal_lambda(t)
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ h_0 = lambda_prev_0 - lambda_prev_1
+ h = lambda_t - lambda_prev_0
+ r0 = h_0 / h
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
+ if self.predict_x0:
+ if solver_type == 'dpm_solver':
+ x_t = (
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
+ - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
+ )
+ elif solver_type == 'taylor':
+ x_t = (
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
+ )
+ else:
+ if solver_type == 'dpm_solver':
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
+ - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
+ )
+ elif solver_type == 'taylor':
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
+ )
+ return x_t
+
+ def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
+ """
+ Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ ns = self.noise_schedule
+ dims = x.dim()
+ model_prev_2, model_prev_1, model_prev_0 = model_prev_list
+ t_prev_2, t_prev_1, t_prev_0 = t_prev_list
+ lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
+ t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ h_1 = lambda_prev_1 - lambda_prev_2
+ h_0 = lambda_prev_0 - lambda_prev_1
+ h = lambda_t - lambda_prev_0
+ r0, r1 = h_0 / h, h_1 / h
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
+ D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
+ D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
+ D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
+ if self.predict_x0:
+ x_t = (
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
+ - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
+ )
+ else:
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
+ - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
+ )
+ return x_t
+
+ def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
+ r2=None):
+ """
+ Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ r1: A `float`. The hyperparameter of the second-order or third-order solver.
+ r2: A `float`. The hyperparameter of the third-order solver.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if order == 1:
+ return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
+ elif order == 2:
+ return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
+ solver_type=solver_type, r1=r1)
+ elif order == 3:
+ return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
+ solver_type=solver_type, r1=r1, r2=r2)
+ else:
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
+
+ def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
+ """
+ Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if order == 1:
+ return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
+ elif order == 2:
+ return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
+ elif order == 3:
+ return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
+ else:
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
+
+ def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
+ solver_type='dpm_solver'):
+ """
+ The adaptive step size solver based on singlestep DPM-Solver.
+ Args:
+ x: A pytorch tensor. The initial value at time `t_T`.
+ order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
+ t_T: A `float`. The starting time of the sampling (default is T).
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
+ h_init: A `float`. The initial step size (for logSNR).
+ atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
+ rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
+ theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
+ t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
+ current time and `t_0` is less than `t_err`. The default setting is 1e-5.
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ Returns:
+ x_0: A pytorch tensor. The approximated solution at time `t_0`.
+ [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
+ """
+ ns = self.noise_schedule
+ s = t_T * torch.ones((x.shape[0],)).to(x)
+ lambda_s = ns.marginal_lambda(s)
+ lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
+ h = h_init * torch.ones_like(s).to(x)
+ x_prev = x
+ nfe = 0
+ if order == 2:
+ r1 = 0.5
+ lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
+ solver_type=solver_type,
+ **kwargs)
+ elif order == 3:
+ r1, r2 = 1. / 3., 2. / 3.
+ lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
+ return_intermediate=True,
+ solver_type=solver_type)
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
+ solver_type=solver_type,
+ **kwargs)
+ else:
+ raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
+ while torch.abs((s - t_0)).mean() > t_err:
+ t = ns.inverse_lambda(lambda_s + h)
+ x_lower, lower_noise_kwargs = lower_update(x, s, t)
+ x_higher = higher_update(x, s, t, **lower_noise_kwargs)
+ delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
+ norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
+ E = norm_fn((x_higher - x_lower) / delta).max()
+ if torch.all(E <= 1.):
+ x = x_higher
+ s = t
+ x_prev = x_lower
+ lambda_s = ns.marginal_lambda(s)
+ h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
+ nfe += order
+ print('adaptive solver nfe', nfe)
+ return x
+
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
+ method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
+ atol=0.0078, rtol=0.05,
+ ):
+ """
+ Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
+ =====================================================
+ We support the following algorithms for both noise prediction model and data prediction model:
+ - 'singlestep':
+ Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
+ We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
+ The total number of function evaluations (NFE) == `steps`.
+ Given a fixed NFE == `steps`, the sampling procedure is:
+ - If `order` == 1:
+ - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
+ - If `order` == 2:
+ - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
+ - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
+ - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
+ - If `order` == 3:
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
+ - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
+ - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
+ - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
+ - 'multistep':
+ Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
+ We initialize the first `order` values by lower order multistep solvers.
+ Given a fixed NFE == `steps`, the sampling procedure is:
+ Denote K = steps.
+ - If `order` == 1:
+ - We use K steps of DPM-Solver-1 (i.e. DDIM).
+ - If `order` == 2:
+ - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
+ - If `order` == 3:
+ - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
+ - 'singlestep_fixed':
+ Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
+ We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
+ - 'adaptive':
+ Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
+ We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
+ You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
+ (NFE) and the sample quality.
+ - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
+ - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
+ =====================================================
+ Some advices for choosing the algorithm:
+ - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
+ Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
+ e.g.
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
+ skip_type='time_uniform', method='singlestep')
+ - For **guided sampling with large guidance scale** by DPMs:
+ Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
+ e.g.
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
+ skip_type='time_uniform', method='multistep')
+ We support three types of `skip_type`:
+ - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
+ - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
+ - 'time_quadratic': quadratic time for the time steps.
+ =====================================================
+ Args:
+ x: A pytorch tensor. The initial value at time `t_start`
+ e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
+ steps: A `int`. The total number of function evaluations (NFE).
+ t_start: A `float`. The starting time of the sampling.
+ If `T` is None, we use self.noise_schedule.T (default is 1.0).
+ t_end: A `float`. The ending time of the sampling.
+ If `t_end` is None, we use 1. / self.noise_schedule.total_N.
+ e.g. if total_N == 1000, we have `t_end` == 1e-3.
+ For discrete-time DPMs:
+ - We recommend `t_end` == 1. / self.noise_schedule.total_N.
+ For continuous-time DPMs:
+ - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
+ order: A `int`. The order of DPM-Solver.
+ skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
+ method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
+ denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
+ Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
+ This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
+ score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
+ for diffusion models sampling by diffusion SDEs for low-resolutional images
+ (such as CIFAR-10). However, we observed that such trick does not matter for
+ high-resolutional images. As it needs an additional NFE, we do not recommend
+ it for high-resolutional images.
+ lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
+ Only valid for `method=multistep` and `steps < 15`. We empirically find that
+ this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
+ (especially for steps <= 10). So we recommend to set it to be `True`.
+ solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
+ atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
+ rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
+ Returns:
+ x_end: A pytorch tensor. The approximated solution at time `t_end`.
+ """
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
+ t_T = self.noise_schedule.T if t_start is None else t_start
+ device = x.device
+ if method == 'adaptive':
+ with torch.no_grad():
+ x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
+ solver_type=solver_type)
+ elif method == 'multistep':
+ assert steps >= order
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
+ assert timesteps.shape[0] - 1 == steps
+ with torch.no_grad():
+ vec_t = timesteps[0].expand((x.shape[0]))
+ model_prev_list = [self.model_fn(x, vec_t)]
+ t_prev_list = [vec_t]
+ # Init the first `order` values by lower order multistep DPM-Solver.
+ for init_order in tqdm(range(1, order), desc="DPM init order"):
+ vec_t = timesteps[init_order].expand(x.shape[0])
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
+ solver_type=solver_type)
+ model_prev_list.append(self.model_fn(x, vec_t))
+ t_prev_list.append(vec_t)
+ # Compute the remaining values by `order`-th order multistep DPM-Solver.
+ for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
+ vec_t = timesteps[step].expand(x.shape[0])
+ if lower_order_final and steps < 15:
+ step_order = min(order, steps + 1 - step)
+ else:
+ step_order = order
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
+ solver_type=solver_type)
+ for i in range(order - 1):
+ t_prev_list[i] = t_prev_list[i + 1]
+ model_prev_list[i] = model_prev_list[i + 1]
+ t_prev_list[-1] = vec_t
+ # We do not need to evaluate the final model value.
+ if step < steps:
+ model_prev_list[-1] = self.model_fn(x, vec_t)
+ elif method in ['singlestep', 'singlestep_fixed']:
+ if method == 'singlestep':
+ timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
+ skip_type=skip_type,
+ t_T=t_T, t_0=t_0,
+ device=device)
+ elif method == 'singlestep_fixed':
+ K = steps // order
+ orders = [order, ] * K
+ timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
+ for i, order in enumerate(orders):
+ t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
+ timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
+ N=order, device=device)
+ lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
+ vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
+ h = lambda_inner[-1] - lambda_inner[0]
+ r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
+ r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
+ x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
+ if denoise_to_zero:
+ x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
+ return x
+
+
+#############################################################
+# other utility functions
+#############################################################
+
+def interpolate_fn(x, xp, yp):
+ """
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
+ Args:
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
+ yp: PyTorch tensor with shape [C, K].
+ Returns:
+ The function values f(x), with shape [N, C].
+ """
+ N, K = x.shape[0], xp.shape[1]
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
+ x_idx = torch.argmin(x_indices, dim=2)
+ cand_start_idx = x_idx - 1
+ start_idx = torch.where(
+ torch.eq(x_idx, 0),
+ torch.tensor(1, device=x.device),
+ torch.where(
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+ ),
+ )
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
+ start_idx2 = torch.where(
+ torch.eq(x_idx, 0),
+ torch.tensor(0, device=x.device),
+ torch.where(
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+ ),
+ )
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
+ return cand
+
+
+def expand_dims(v, dims):
+ """
+ Expand the tensor `v` to the dim `dims`.
+ Args:
+ `v`: a PyTorch tensor with shape [N].
+ `dim`: a `int`.
+ Returns:
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
+ """
+ return v[(...,) + (None,) * (dims - 1)]
\ No newline at end of file
diff --git a/ldm/models/diffusion/dpm_solver/sampler.py b/ldm/models/diffusion/dpm_solver/sampler.py
new file mode 100644
index 0000000000000000000000000000000000000000..7d137b8cf36718c1c58faa09f9dd919e5fb2977b
--- /dev/null
+++ b/ldm/models/diffusion/dpm_solver/sampler.py
@@ -0,0 +1,87 @@
+"""SAMPLING ONLY."""
+import torch
+
+from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
+
+
+MODEL_TYPES = {
+ "eps": "noise",
+ "v": "v"
+}
+
+
+class DPMSolverSampler(object):
+ def __init__(self, model, **kwargs):
+ super().__init__()
+ self.model = model
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
+ self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
+
+ def register_buffer(self, name, attr):
+ if type(attr) == torch.Tensor:
+ if attr.device != torch.device("cuda"):
+ attr = attr.to(torch.device("cuda"))
+ setattr(self, name, attr)
+
+ @torch.no_grad()
+ def sample(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None,
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ **kwargs
+ ):
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ # sampling
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+
+ print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
+
+ device = self.model.betas.device
+ if x_T is None:
+ img = torch.randn(size, device=device)
+ else:
+ img = x_T
+
+ ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
+
+ model_fn = model_wrapper(
+ lambda x, t, c: self.model.apply_model(x, t, c),
+ ns,
+ model_type=MODEL_TYPES[self.model.parameterization],
+ guidance_type="classifier-free",
+ condition=conditioning,
+ unconditional_condition=unconditional_conditioning,
+ guidance_scale=unconditional_guidance_scale,
+ )
+
+ dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
+ x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
+
+ return x.to(device), None
\ No newline at end of file
diff --git a/ldm/models/diffusion/plms.py b/ldm/models/diffusion/plms.py
new file mode 100644
index 0000000000000000000000000000000000000000..7002a365d27168ced0a04e9a4d83e088f8284eae
--- /dev/null
+++ b/ldm/models/diffusion/plms.py
@@ -0,0 +1,244 @@
+"""SAMPLING ONLY."""
+
+import torch
+import numpy as np
+from tqdm import tqdm
+from functools import partial
+
+from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
+from ldm.models.diffusion.sampling_util import norm_thresholding
+
+
+class PLMSSampler(object):
+ def __init__(self, model, schedule="linear", **kwargs):
+ super().__init__()
+ self.model = model
+ self.ddpm_num_timesteps = model.num_timesteps
+ self.schedule = schedule
+
+ def register_buffer(self, name, attr):
+ if type(attr) == torch.Tensor:
+ if attr.device != torch.device("cuda"):
+ attr = attr.to(torch.device("cuda"))
+ setattr(self, name, attr)
+
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
+ if ddim_eta != 0:
+ raise ValueError('ddim_eta must be 0 for PLMS')
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
+ alphas_cumprod = self.model.alphas_cumprod
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
+
+ self.register_buffer('betas', to_torch(self.model.betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+ # ddim sampling parameters
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+ ddim_timesteps=self.ddim_timesteps,
+ eta=ddim_eta,verbose=verbose)
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
+ self.register_buffer('ddim_alphas', ddim_alphas)
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+ @torch.no_grad()
+ def sample(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None,
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ dynamic_threshold=None,
+ **kwargs
+ ):
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+ # sampling
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+ print(f'Data shape for PLMS sampling is {size}')
+
+ samples, intermediates = self.plms_sampling(conditioning, size,
+ callback=callback,
+ img_callback=img_callback,
+ quantize_denoised=quantize_x0,
+ mask=mask, x0=x0,
+ ddim_use_original_steps=False,
+ noise_dropout=noise_dropout,
+ temperature=temperature,
+ score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ x_T=x_T,
+ log_every_t=log_every_t,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ dynamic_threshold=dynamic_threshold,
+ )
+ return samples, intermediates
+
+ @torch.no_grad()
+ def plms_sampling(self, cond, shape,
+ x_T=None, ddim_use_original_steps=False,
+ callback=None, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, img_callback=None, log_every_t=100,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
+ dynamic_threshold=None):
+ device = self.model.betas.device
+ b = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=device)
+ else:
+ img = x_T
+
+ if timesteps is None:
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
+ elif timesteps is not None and not ddim_use_original_steps:
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
+ timesteps = self.ddim_timesteps[:subset_end]
+
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
+ time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+ print(f"Running PLMS Sampling with {total_steps} timesteps")
+
+ iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
+ old_eps = []
+
+ for i, step in enumerate(iterator):
+ index = total_steps - i - 1
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
+ ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
+
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
+ img = img_orig * mask + (1. - mask) * img
+
+ outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
+ quantize_denoised=quantize_denoised, temperature=temperature,
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ old_eps=old_eps, t_next=ts_next,
+ dynamic_threshold=dynamic_threshold)
+ img, pred_x0, e_t = outs
+ old_eps.append(e_t)
+ if len(old_eps) >= 4:
+ old_eps.pop(0)
+ if callback: callback(i)
+ if img_callback: img_callback(pred_x0, i)
+
+ if index % log_every_t == 0 or index == total_steps - 1:
+ intermediates['x_inter'].append(img)
+ intermediates['pred_x0'].append(pred_x0)
+
+ return img, intermediates
+
+ @torch.no_grad()
+ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
+ dynamic_threshold=None):
+ b, *_, device = *x.shape, x.device
+
+ def get_model_output(x, t):
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+ e_t = self.model.apply_model(x, t, c)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t] * 2)
+ c_in = torch.cat([unconditional_conditioning, c])
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+
+ if score_corrector is not None:
+ assert self.model.parameterization == "eps"
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+ return e_t
+
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+
+ def get_x_prev_and_pred_x0(e_t, index):
+ # select parameters corresponding to the currently considered timestep
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
+
+ # current prediction for x_0
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+ if quantize_denoised:
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+ if dynamic_threshold is not None:
+ pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
+ # direction pointing to x_t
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+ return x_prev, pred_x0
+
+ e_t = get_model_output(x, t)
+ if len(old_eps) == 0:
+ # Pseudo Improved Euler (2nd order)
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
+ e_t_next = get_model_output(x_prev, t_next)
+ e_t_prime = (e_t + e_t_next) / 2
+ elif len(old_eps) == 1:
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
+ elif len(old_eps) == 2:
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
+ elif len(old_eps) >= 3:
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
+
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
+
+ return x_prev, pred_x0, e_t
diff --git a/ldm/models/diffusion/sampling_util.py b/ldm/models/diffusion/sampling_util.py
new file mode 100644
index 0000000000000000000000000000000000000000..7eff02be6d7c54d43ee6680636ac0698dd3b3f33
--- /dev/null
+++ b/ldm/models/diffusion/sampling_util.py
@@ -0,0 +1,22 @@
+import torch
+import numpy as np
+
+
+def append_dims(x, target_dims):
+ """Appends dimensions to the end of a tensor until it has target_dims dimensions.
+ From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
+ dims_to_append = target_dims - x.ndim
+ if dims_to_append < 0:
+ raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
+ return x[(...,) + (None,) * dims_to_append]
+
+
+def norm_thresholding(x0, value):
+ s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
+ return x0 * (value / s)
+
+
+def spatial_norm_thresholding(x0, value):
+ # b c h w
+ s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
+ return x0 * (value / s)
\ No newline at end of file
diff --git a/ldm/modules/attention.py b/ldm/modules/attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..509cd873768f0dd75a75ab3fcdd652822b12b59f
--- /dev/null
+++ b/ldm/modules/attention.py
@@ -0,0 +1,341 @@
+from inspect import isfunction
+import math
+import torch
+import torch.nn.functional as F
+from torch import nn, einsum
+from einops import rearrange, repeat
+from typing import Optional, Any
+
+from ldm.modules.diffusionmodules.util import checkpoint
+
+
+try:
+ import xformers
+ import xformers.ops
+ XFORMERS_IS_AVAILBLE = True
+except:
+ XFORMERS_IS_AVAILBLE = False
+
+# CrossAttn precision handling
+import os
+_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
+
+def exists(val):
+ return val is not None
+
+
+def uniq(arr):
+ return{el: True for el in arr}.keys()
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def max_neg_value(t):
+ return -torch.finfo(t.dtype).max
+
+
+def init_(tensor):
+ dim = tensor.shape[-1]
+ std = 1 / math.sqrt(dim)
+ tensor.uniform_(-std, std)
+ return tensor
+
+
+# feedforward
+class GEGLU(nn.Module):
+ def __init__(self, dim_in, dim_out):
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out * 2)
+
+ def forward(self, x):
+ x, gate = self.proj(x).chunk(2, dim=-1)
+ return x * F.gelu(gate)
+
+
+class FeedForward(nn.Module):
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
+ super().__init__()
+ inner_dim = int(dim * mult)
+ dim_out = default(dim_out, dim)
+ project_in = nn.Sequential(
+ nn.Linear(dim, inner_dim),
+ nn.GELU()
+ ) if not glu else GEGLU(dim, inner_dim)
+
+ self.net = nn.Sequential(
+ project_in,
+ nn.Dropout(dropout),
+ nn.Linear(inner_dim, dim_out)
+ )
+
+ def forward(self, x):
+ return self.net(x)
+
+
+def zero_module(module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+
+def Normalize(in_channels):
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
+
+
+class SpatialSelfAttention(nn.Module):
+ def __init__(self, in_channels):
+ super().__init__()
+ self.in_channels = in_channels
+
+ self.norm = Normalize(in_channels)
+ self.q = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.k = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.v = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.proj_out = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ def forward(self, x):
+ h_ = x
+ h_ = self.norm(h_)
+ q = self.q(h_)
+ k = self.k(h_)
+ v = self.v(h_)
+
+ # compute attention
+ b,c,h,w = q.shape
+ q = rearrange(q, 'b c h w -> b (h w) c')
+ k = rearrange(k, 'b c h w -> b c (h w)')
+ w_ = torch.einsum('bij,bjk->bik', q, k)
+
+ w_ = w_ * (int(c)**(-0.5))
+ w_ = torch.nn.functional.softmax(w_, dim=2)
+
+ # attend to values
+ v = rearrange(v, 'b c h w -> b c (h w)')
+ w_ = rearrange(w_, 'b i j -> b j i')
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
+ h_ = self.proj_out(h_)
+
+ return x+h_
+
+
+class CrossAttention(nn.Module):
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
+ super().__init__()
+ inner_dim = dim_head * heads
+ context_dim = default(context_dim, query_dim)
+
+ self.scale = dim_head ** -0.5
+ self.heads = heads
+
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
+
+ self.to_out = nn.Sequential(
+ nn.Linear(inner_dim, query_dim),
+ nn.Dropout(dropout)
+ )
+
+ def forward(self, x, context=None, mask=None):
+ h = self.heads
+
+ q = self.to_q(x)
+ context = default(context, x)
+ k = self.to_k(context)
+ v = self.to_v(context)
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+
+ # force cast to fp32 to avoid overflowing
+ if _ATTN_PRECISION =="fp32":
+ with torch.autocast(enabled=False, device_type = 'cuda'):
+ q, k = q.float(), k.float()
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
+ else:
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
+
+ del q, k
+
+ if exists(mask):
+ mask = rearrange(mask, 'b ... -> b (...)')
+ max_neg_value = -torch.finfo(sim.dtype).max
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
+ sim.masked_fill_(~mask, max_neg_value)
+
+ # attention, what we cannot get enough of
+ sim = sim.softmax(dim=-1)
+
+ out = einsum('b i j, b j d -> b i d', sim, v)
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
+ return self.to_out(out)
+
+
+class MemoryEfficientCrossAttention(nn.Module):
+ # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
+ super().__init__()
+ print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
+ f"{heads} heads.")
+ inner_dim = dim_head * heads
+ context_dim = default(context_dim, query_dim)
+
+ self.heads = heads
+ self.dim_head = dim_head
+
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
+
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
+ self.attention_op: Optional[Any] = None
+
+ def forward(self, x, context=None, mask=None):
+ q = self.to_q(x)
+ context = default(context, x)
+ k = self.to_k(context)
+ v = self.to_v(context)
+
+ b, _, _ = q.shape
+ q, k, v = map(
+ lambda t: t.unsqueeze(3)
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
+ .permute(0, 2, 1, 3)
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
+ .contiguous(),
+ (q, k, v),
+ )
+
+ # actually compute the attention, what we cannot get enough of
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
+
+ if exists(mask):
+ raise NotImplementedError
+ out = (
+ out.unsqueeze(0)
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
+ .permute(0, 2, 1, 3)
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
+ )
+ return self.to_out(out)
+
+
+class BasicTransformerBlock(nn.Module):
+ ATTENTION_MODES = {
+ "softmax": CrossAttention, # vanilla attention
+ "softmax-xformers": MemoryEfficientCrossAttention
+ }
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
+ disable_self_attn=False):
+ super().__init__()
+ attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
+ assert attn_mode in self.ATTENTION_MODES
+ attn_cls = self.ATTENTION_MODES[attn_mode]
+ self.disable_self_attn = disable_self_attn
+ self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
+ context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
+ self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
+ heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
+ self.norm1 = nn.LayerNorm(dim)
+ self.norm2 = nn.LayerNorm(dim)
+ self.norm3 = nn.LayerNorm(dim)
+ self.checkpoint = checkpoint
+
+ def forward(self, x, context=None):
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
+
+ def _forward(self, x, context=None):
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
+ x = self.attn2(self.norm2(x), context=context) + x
+ x = self.ff(self.norm3(x)) + x
+ return x
+
+
+class SpatialTransformer(nn.Module):
+ """
+ Transformer block for image-like data.
+ First, project the input (aka embedding)
+ and reshape to b, t, d.
+ Then apply standard transformer action.
+ Finally, reshape to image
+ NEW: use_linear for more efficiency instead of the 1x1 convs
+ """
+ def __init__(self, in_channels, n_heads, d_head,
+ depth=1, dropout=0., context_dim=None,
+ disable_self_attn=False, use_linear=False,
+ use_checkpoint=True):
+ super().__init__()
+ if exists(context_dim) and not isinstance(context_dim, list):
+ context_dim = [context_dim]
+ self.in_channels = in_channels
+ inner_dim = n_heads * d_head
+ self.norm = Normalize(in_channels)
+ if not use_linear:
+ self.proj_in = nn.Conv2d(in_channels,
+ inner_dim,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ else:
+ self.proj_in = nn.Linear(in_channels, inner_dim)
+
+ self.transformer_blocks = nn.ModuleList(
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
+ disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
+ for d in range(depth)]
+ )
+ if not use_linear:
+ self.proj_out = zero_module(nn.Conv2d(inner_dim,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0))
+ else:
+ self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
+ self.use_linear = use_linear
+
+ def forward(self, x, context=None):
+ # note: if no context is given, cross-attention defaults to self-attention
+ if not isinstance(context, list):
+ context = [context]
+ b, c, h, w = x.shape
+ x_in = x
+ x = self.norm(x)
+ if not self.use_linear:
+ x = self.proj_in(x)
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
+ if self.use_linear:
+ x = self.proj_in(x)
+ for i, block in enumerate(self.transformer_blocks):
+ x = block(x, context=context[i])
+ if self.use_linear:
+ x = self.proj_out(x)
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
+ if not self.use_linear:
+ x = self.proj_out(x)
+ return x + x_in
+
diff --git a/ldm/modules/diffusionmodules/__init__.py b/ldm/modules/diffusionmodules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/ldm/modules/diffusionmodules/model.py b/ldm/modules/diffusionmodules/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..b089eebbe1676d8249005bb9def002ff5180715b
--- /dev/null
+++ b/ldm/modules/diffusionmodules/model.py
@@ -0,0 +1,852 @@
+# pytorch_diffusion + derived encoder decoder
+import math
+import torch
+import torch.nn as nn
+import numpy as np
+from einops import rearrange
+from typing import Optional, Any
+
+from ldm.modules.attention import MemoryEfficientCrossAttention
+
+try:
+ import xformers
+ import xformers.ops
+ XFORMERS_IS_AVAILBLE = True
+except:
+ XFORMERS_IS_AVAILBLE = False
+ print("No module 'xformers'. Proceeding without it.")
+
+
+def get_timestep_embedding(timesteps, embedding_dim):
+ """
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
+ From Fairseq.
+ Build sinusoidal embeddings.
+ This matches the implementation in tensor2tensor, but differs slightly
+ from the description in Section 3.5 of "Attention Is All You Need".
+ """
+ assert len(timesteps.shape) == 1
+
+ half_dim = embedding_dim // 2
+ emb = math.log(10000) / (half_dim - 1)
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
+ emb = emb.to(device=timesteps.device)
+ emb = timesteps.float()[:, None] * emb[None, :]
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
+ if embedding_dim % 2 == 1: # zero pad
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
+ return emb
+
+
+def nonlinearity(x):
+ # swish
+ return x*torch.sigmoid(x)
+
+
+def Normalize(in_channels, num_groups=32):
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
+
+
+class Upsample(nn.Module):
+ def __init__(self, in_channels, with_conv):
+ super().__init__()
+ self.with_conv = with_conv
+ if self.with_conv:
+ self.conv = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
+ if self.with_conv:
+ x = self.conv(x)
+ return x
+
+
+class Downsample(nn.Module):
+ def __init__(self, in_channels, with_conv):
+ super().__init__()
+ self.with_conv = with_conv
+ if self.with_conv:
+ # no asymmetric padding in torch conv, must do it ourselves
+ self.conv = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=3,
+ stride=2,
+ padding=0)
+
+ def forward(self, x):
+ if self.with_conv:
+ pad = (0,1,0,1)
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
+ x = self.conv(x)
+ else:
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
+ return x
+
+
+class ResnetBlock(nn.Module):
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
+ dropout, temb_channels=512):
+ super().__init__()
+ self.in_channels = in_channels
+ out_channels = in_channels if out_channels is None else out_channels
+ self.out_channels = out_channels
+ self.use_conv_shortcut = conv_shortcut
+
+ self.norm1 = Normalize(in_channels)
+ self.conv1 = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ if temb_channels > 0:
+ self.temb_proj = torch.nn.Linear(temb_channels,
+ out_channels)
+ self.norm2 = Normalize(out_channels)
+ self.dropout = torch.nn.Dropout(dropout)
+ self.conv2 = torch.nn.Conv2d(out_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ if self.in_channels != self.out_channels:
+ if self.use_conv_shortcut:
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ else:
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ def forward(self, x, temb):
+ h = x
+ h = self.norm1(h)
+ h = nonlinearity(h)
+ h = self.conv1(h)
+
+ if temb is not None:
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
+
+ h = self.norm2(h)
+ h = nonlinearity(h)
+ h = self.dropout(h)
+ h = self.conv2(h)
+
+ if self.in_channels != self.out_channels:
+ if self.use_conv_shortcut:
+ x = self.conv_shortcut(x)
+ else:
+ x = self.nin_shortcut(x)
+
+ return x+h
+
+
+class AttnBlock(nn.Module):
+ def __init__(self, in_channels):
+ super().__init__()
+ self.in_channels = in_channels
+
+ self.norm = Normalize(in_channels)
+ self.q = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.k = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.v = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.proj_out = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ def forward(self, x):
+ h_ = x
+ h_ = self.norm(h_)
+ q = self.q(h_)
+ k = self.k(h_)
+ v = self.v(h_)
+
+ # compute attention
+ b,c,h,w = q.shape
+ q = q.reshape(b,c,h*w)
+ q = q.permute(0,2,1) # b,hw,c
+ k = k.reshape(b,c,h*w) # b,c,hw
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
+ w_ = w_ * (int(c)**(-0.5))
+ w_ = torch.nn.functional.softmax(w_, dim=2)
+
+ # attend to values
+ v = v.reshape(b,c,h*w)
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
+ h_ = h_.reshape(b,c,h,w)
+
+ h_ = self.proj_out(h_)
+
+ return x+h_
+
+class MemoryEfficientAttnBlock(nn.Module):
+ """
+ Uses xformers efficient implementation,
+ see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
+ Note: this is a single-head self-attention operation
+ """
+ #
+ def __init__(self, in_channels):
+ super().__init__()
+ self.in_channels = in_channels
+
+ self.norm = Normalize(in_channels)
+ self.q = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.k = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.v = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.proj_out = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.attention_op: Optional[Any] = None
+
+ def forward(self, x):
+ h_ = x
+ h_ = self.norm(h_)
+ q = self.q(h_)
+ k = self.k(h_)
+ v = self.v(h_)
+
+ # compute attention
+ B, C, H, W = q.shape
+ q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
+
+ q, k, v = map(
+ lambda t: t.unsqueeze(3)
+ .reshape(B, t.shape[1], 1, C)
+ .permute(0, 2, 1, 3)
+ .reshape(B * 1, t.shape[1], C)
+ .contiguous(),
+ (q, k, v),
+ )
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
+
+ out = (
+ out.unsqueeze(0)
+ .reshape(B, 1, out.shape[1], C)
+ .permute(0, 2, 1, 3)
+ .reshape(B, out.shape[1], C)
+ )
+ out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
+ out = self.proj_out(out)
+ return x+out
+
+
+class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
+ def forward(self, x, context=None, mask=None):
+ b, c, h, w = x.shape
+ x = rearrange(x, 'b c h w -> b (h w) c')
+ out = super().forward(x, context=context, mask=mask)
+ out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
+ return x + out
+
+
+def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
+ assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
+ if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
+ attn_type = "vanilla-xformers"
+ print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
+ if attn_type == "vanilla":
+ assert attn_kwargs is None
+ return AttnBlock(in_channels)
+ elif attn_type == "vanilla-xformers":
+ print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
+ return MemoryEfficientAttnBlock(in_channels)
+ elif type == "memory-efficient-cross-attn":
+ attn_kwargs["query_dim"] = in_channels
+ return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
+ elif attn_type == "none":
+ return nn.Identity(in_channels)
+ else:
+ raise NotImplementedError()
+
+
+class Model(nn.Module):
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
+ super().__init__()
+ if use_linear_attn: attn_type = "linear"
+ self.ch = ch
+ self.temb_ch = self.ch*4
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ self.resolution = resolution
+ self.in_channels = in_channels
+
+ self.use_timestep = use_timestep
+ if self.use_timestep:
+ # timestep embedding
+ self.temb = nn.Module()
+ self.temb.dense = nn.ModuleList([
+ torch.nn.Linear(self.ch,
+ self.temb_ch),
+ torch.nn.Linear(self.temb_ch,
+ self.temb_ch),
+ ])
+
+ # downsampling
+ self.conv_in = torch.nn.Conv2d(in_channels,
+ self.ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ curr_res = resolution
+ in_ch_mult = (1,)+tuple(ch_mult)
+ self.down = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_in = ch*in_ch_mult[i_level]
+ block_out = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks):
+ block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ down = nn.Module()
+ down.block = block
+ down.attn = attn
+ if i_level != self.num_resolutions-1:
+ down.downsample = Downsample(block_in, resamp_with_conv)
+ curr_res = curr_res // 2
+ self.down.append(down)
+
+ # middle
+ self.mid = nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+
+ # upsampling
+ self.up = nn.ModuleList()
+ for i_level in reversed(range(self.num_resolutions)):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_out = ch*ch_mult[i_level]
+ skip_in = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks+1):
+ if i_block == self.num_res_blocks:
+ skip_in = ch*in_ch_mult[i_level]
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ up = nn.Module()
+ up.block = block
+ up.attn = attn
+ if i_level != 0:
+ up.upsample = Upsample(block_in, resamp_with_conv)
+ curr_res = curr_res * 2
+ self.up.insert(0, up) # prepend to get consistent order
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ out_ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x, t=None, context=None):
+ #assert x.shape[2] == x.shape[3] == self.resolution
+ if context is not None:
+ # assume aligned context, cat along channel axis
+ x = torch.cat((x, context), dim=1)
+ if self.use_timestep:
+ # timestep embedding
+ assert t is not None
+ temb = get_timestep_embedding(t, self.ch)
+ temb = self.temb.dense[0](temb)
+ temb = nonlinearity(temb)
+ temb = self.temb.dense[1](temb)
+ else:
+ temb = None
+
+ # downsampling
+ hs = [self.conv_in(x)]
+ for i_level in range(self.num_resolutions):
+ for i_block in range(self.num_res_blocks):
+ h = self.down[i_level].block[i_block](hs[-1], temb)
+ if len(self.down[i_level].attn) > 0:
+ h = self.down[i_level].attn[i_block](h)
+ hs.append(h)
+ if i_level != self.num_resolutions-1:
+ hs.append(self.down[i_level].downsample(hs[-1]))
+
+ # middle
+ h = hs[-1]
+ h = self.mid.block_1(h, temb)
+ h = self.mid.attn_1(h)
+ h = self.mid.block_2(h, temb)
+
+ # upsampling
+ for i_level in reversed(range(self.num_resolutions)):
+ for i_block in range(self.num_res_blocks+1):
+ h = self.up[i_level].block[i_block](
+ torch.cat([h, hs.pop()], dim=1), temb)
+ if len(self.up[i_level].attn) > 0:
+ h = self.up[i_level].attn[i_block](h)
+ if i_level != 0:
+ h = self.up[i_level].upsample(h)
+
+ # end
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ return h
+
+ def get_last_layer(self):
+ return self.conv_out.weight
+
+
+class Encoder(nn.Module):
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
+ **ignore_kwargs):
+ super().__init__()
+ if use_linear_attn: attn_type = "linear"
+ self.ch = ch
+ self.temb_ch = 0
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ self.resolution = resolution
+ self.in_channels = in_channels
+
+ # downsampling
+ self.conv_in = torch.nn.Conv2d(in_channels,
+ self.ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ curr_res = resolution
+ in_ch_mult = (1,)+tuple(ch_mult)
+ self.in_ch_mult = in_ch_mult
+ self.down = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_in = ch*in_ch_mult[i_level]
+ block_out = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks):
+ block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ down = nn.Module()
+ down.block = block
+ down.attn = attn
+ if i_level != self.num_resolutions-1:
+ down.downsample = Downsample(block_in, resamp_with_conv)
+ curr_res = curr_res // 2
+ self.down.append(down)
+
+ # middle
+ self.mid = nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ 2*z_channels if double_z else z_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ # timestep embedding
+ temb = None
+
+ # downsampling
+ hs = [self.conv_in(x)]
+ for i_level in range(self.num_resolutions):
+ for i_block in range(self.num_res_blocks):
+ h = self.down[i_level].block[i_block](hs[-1], temb)
+ if len(self.down[i_level].attn) > 0:
+ h = self.down[i_level].attn[i_block](h)
+ hs.append(h)
+ if i_level != self.num_resolutions-1:
+ hs.append(self.down[i_level].downsample(hs[-1]))
+
+ # middle
+ h = hs[-1]
+ h = self.mid.block_1(h, temb)
+ h = self.mid.attn_1(h)
+ h = self.mid.block_2(h, temb)
+
+ # end
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ return h
+
+
+class Decoder(nn.Module):
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
+ attn_type="vanilla", **ignorekwargs):
+ super().__init__()
+ if use_linear_attn: attn_type = "linear"
+ self.ch = ch
+ self.temb_ch = 0
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ self.resolution = resolution
+ self.in_channels = in_channels
+ self.give_pre_end = give_pre_end
+ self.tanh_out = tanh_out
+
+ # compute in_ch_mult, block_in and curr_res at lowest res
+ in_ch_mult = (1,)+tuple(ch_mult)
+ block_in = ch*ch_mult[self.num_resolutions-1]
+ curr_res = resolution // 2**(self.num_resolutions-1)
+ self.z_shape = (1,z_channels,curr_res,curr_res)
+ print("Working with z of shape {} = {} dimensions.".format(
+ self.z_shape, np.prod(self.z_shape)))
+
+ # z to block_in
+ self.conv_in = torch.nn.Conv2d(z_channels,
+ block_in,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ # middle
+ self.mid = nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+
+ # upsampling
+ self.up = nn.ModuleList()
+ for i_level in reversed(range(self.num_resolutions)):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_out = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks+1):
+ block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ up = nn.Module()
+ up.block = block
+ up.attn = attn
+ if i_level != 0:
+ up.upsample = Upsample(block_in, resamp_with_conv)
+ curr_res = curr_res * 2
+ self.up.insert(0, up) # prepend to get consistent order
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ out_ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, z):
+ #assert z.shape[1:] == self.z_shape[1:]
+ self.last_z_shape = z.shape
+
+ # timestep embedding
+ temb = None
+
+ # z to block_in
+ h = self.conv_in(z)
+
+ # middle
+ h = self.mid.block_1(h, temb)
+ h = self.mid.attn_1(h)
+ h = self.mid.block_2(h, temb)
+
+ # upsampling
+ for i_level in reversed(range(self.num_resolutions)):
+ for i_block in range(self.num_res_blocks+1):
+ h = self.up[i_level].block[i_block](h, temb)
+ if len(self.up[i_level].attn) > 0:
+ h = self.up[i_level].attn[i_block](h)
+ if i_level != 0:
+ h = self.up[i_level].upsample(h)
+
+ # end
+ if self.give_pre_end:
+ return h
+
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ if self.tanh_out:
+ h = torch.tanh(h)
+ return h
+
+
+class SimpleDecoder(nn.Module):
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
+ super().__init__()
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
+ ResnetBlock(in_channels=in_channels,
+ out_channels=2 * in_channels,
+ temb_channels=0, dropout=0.0),
+ ResnetBlock(in_channels=2 * in_channels,
+ out_channels=4 * in_channels,
+ temb_channels=0, dropout=0.0),
+ ResnetBlock(in_channels=4 * in_channels,
+ out_channels=2 * in_channels,
+ temb_channels=0, dropout=0.0),
+ nn.Conv2d(2*in_channels, in_channels, 1),
+ Upsample(in_channels, with_conv=True)])
+ # end
+ self.norm_out = Normalize(in_channels)
+ self.conv_out = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ for i, layer in enumerate(self.model):
+ if i in [1,2,3]:
+ x = layer(x, None)
+ else:
+ x = layer(x)
+
+ h = self.norm_out(x)
+ h = nonlinearity(h)
+ x = self.conv_out(h)
+ return x
+
+
+class UpsampleDecoder(nn.Module):
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
+ ch_mult=(2,2), dropout=0.0):
+ super().__init__()
+ # upsampling
+ self.temb_ch = 0
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ block_in = in_channels
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
+ self.res_blocks = nn.ModuleList()
+ self.upsample_blocks = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ res_block = []
+ block_out = ch * ch_mult[i_level]
+ for i_block in range(self.num_res_blocks + 1):
+ res_block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ self.res_blocks.append(nn.ModuleList(res_block))
+ if i_level != self.num_resolutions - 1:
+ self.upsample_blocks.append(Upsample(block_in, True))
+ curr_res = curr_res * 2
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ # upsampling
+ h = x
+ for k, i_level in enumerate(range(self.num_resolutions)):
+ for i_block in range(self.num_res_blocks + 1):
+ h = self.res_blocks[i_level][i_block](h, None)
+ if i_level != self.num_resolutions - 1:
+ h = self.upsample_blocks[k](h)
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ return h
+
+
+class LatentRescaler(nn.Module):
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
+ super().__init__()
+ # residual block, interpolate, residual block
+ self.factor = factor
+ self.conv_in = nn.Conv2d(in_channels,
+ mid_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
+ out_channels=mid_channels,
+ temb_channels=0,
+ dropout=0.0) for _ in range(depth)])
+ self.attn = AttnBlock(mid_channels)
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
+ out_channels=mid_channels,
+ temb_channels=0,
+ dropout=0.0) for _ in range(depth)])
+
+ self.conv_out = nn.Conv2d(mid_channels,
+ out_channels,
+ kernel_size=1,
+ )
+
+ def forward(self, x):
+ x = self.conv_in(x)
+ for block in self.res_block1:
+ x = block(x, None)
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
+ x = self.attn(x)
+ for block in self.res_block2:
+ x = block(x, None)
+ x = self.conv_out(x)
+ return x
+
+
+class MergedRescaleEncoder(nn.Module):
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
+ super().__init__()
+ intermediate_chn = ch * ch_mult[-1]
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
+ out_ch=None)
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
+
+ def forward(self, x):
+ x = self.encoder(x)
+ x = self.rescaler(x)
+ return x
+
+
+class MergedRescaleDecoder(nn.Module):
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
+ super().__init__()
+ tmp_chn = z_channels*ch_mult[-1]
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
+ out_channels=tmp_chn, depth=rescale_module_depth)
+
+ def forward(self, x):
+ x = self.rescaler(x)
+ x = self.decoder(x)
+ return x
+
+
+class Upsampler(nn.Module):
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
+ super().__init__()
+ assert out_size >= in_size
+ num_blocks = int(np.log2(out_size//in_size))+1
+ factor_up = 1.+ (out_size % in_size)
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
+ out_channels=in_channels)
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
+ attn_resolutions=[], in_channels=None, ch=in_channels,
+ ch_mult=[ch_mult for _ in range(num_blocks)])
+
+ def forward(self, x):
+ x = self.rescaler(x)
+ x = self.decoder(x)
+ return x
+
+
+class Resize(nn.Module):
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
+ super().__init__()
+ self.with_conv = learned
+ self.mode = mode
+ if self.with_conv:
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
+ raise NotImplementedError()
+ assert in_channels is not None
+ # no asymmetric padding in torch conv, must do it ourselves
+ self.conv = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=4,
+ stride=2,
+ padding=1)
+
+ def forward(self, x, scale_factor=1.0):
+ if scale_factor==1.0:
+ return x
+ else:
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
+ return x
diff --git a/ldm/modules/diffusionmodules/openaimodel.py b/ldm/modules/diffusionmodules/openaimodel.py
new file mode 100644
index 0000000000000000000000000000000000000000..7df6b5abfe8eff07f0c8e8703ba8aee90d45984b
--- /dev/null
+++ b/ldm/modules/diffusionmodules/openaimodel.py
@@ -0,0 +1,786 @@
+from abc import abstractmethod
+import math
+
+import numpy as np
+import torch as th
+import torch.nn as nn
+import torch.nn.functional as F
+
+from ldm.modules.diffusionmodules.util import (
+ checkpoint,
+ conv_nd,
+ linear,
+ avg_pool_nd,
+ zero_module,
+ normalization,
+ timestep_embedding,
+)
+from ldm.modules.attention import SpatialTransformer
+from ldm.util import exists
+
+
+# dummy replace
+def convert_module_to_f16(x):
+ pass
+
+def convert_module_to_f32(x):
+ pass
+
+
+## go
+class AttentionPool2d(nn.Module):
+ """
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
+ """
+
+ def __init__(
+ self,
+ spacial_dim: int,
+ embed_dim: int,
+ num_heads_channels: int,
+ output_dim: int = None,
+ ):
+ super().__init__()
+ self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
+ self.num_heads = embed_dim // num_heads_channels
+ self.attention = QKVAttention(self.num_heads)
+
+ def forward(self, x):
+ b, c, *_spatial = x.shape
+ x = x.reshape(b, c, -1) # NC(HW)
+ x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
+ x = self.qkv_proj(x)
+ x = self.attention(x)
+ x = self.c_proj(x)
+ return x[:, :, 0]
+
+
+class TimestepBlock(nn.Module):
+ """
+ Any module where forward() takes timestep embeddings as a second argument.
+ """
+
+ @abstractmethod
+ def forward(self, x, emb):
+ """
+ Apply the module to `x` given `emb` timestep embeddings.
+ """
+
+
+class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
+ """
+ A sequential module that passes timestep embeddings to the children that
+ support it as an extra input.
+ """
+
+ def forward(self, x, emb, context=None):
+ for layer in self:
+ if isinstance(layer, TimestepBlock):
+ x = layer(x, emb)
+ elif isinstance(layer, SpatialTransformer):
+ x = layer(x, context)
+ else:
+ x = layer(x)
+ return x
+
+
+class Upsample(nn.Module):
+ """
+ An upsampling layer with an optional convolution.
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ upsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.dims = dims
+ if use_conv:
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ if self.dims == 3:
+ x = F.interpolate(
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
+ )
+ else:
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
+ if self.use_conv:
+ x = self.conv(x)
+ return x
+
+class TransposedUpsample(nn.Module):
+ 'Learned 2x upsampling without padding'
+ def __init__(self, channels, out_channels=None, ks=5):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+
+ self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
+
+ def forward(self,x):
+ return self.up(x)
+
+
+class Downsample(nn.Module):
+ """
+ A downsampling layer with an optional convolution.
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ downsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.dims = dims
+ stride = 2 if dims != 3 else (1, 2, 2)
+ if use_conv:
+ self.op = conv_nd(
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
+ )
+ else:
+ assert self.channels == self.out_channels
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ return self.op(x)
+
+
+class ResBlock(TimestepBlock):
+ """
+ A residual block that can optionally change the number of channels.
+ :param channels: the number of input channels.
+ :param emb_channels: the number of timestep embedding channels.
+ :param dropout: the rate of dropout.
+ :param out_channels: if specified, the number of out channels.
+ :param use_conv: if True and out_channels is specified, use a spatial
+ convolution instead of a smaller 1x1 convolution to change the
+ channels in the skip connection.
+ :param dims: determines if the signal is 1D, 2D, or 3D.
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
+ :param up: if True, use this block for upsampling.
+ :param down: if True, use this block for downsampling.
+ """
+
+ def __init__(
+ self,
+ channels,
+ emb_channels,
+ dropout,
+ out_channels=None,
+ use_conv=False,
+ use_scale_shift_norm=False,
+ dims=2,
+ use_checkpoint=False,
+ up=False,
+ down=False,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.emb_channels = emb_channels
+ self.dropout = dropout
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.use_checkpoint = use_checkpoint
+ self.use_scale_shift_norm = use_scale_shift_norm
+
+ self.in_layers = nn.Sequential(
+ normalization(channels),
+ nn.SiLU(),
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
+ )
+
+ self.updown = up or down
+
+ if up:
+ self.h_upd = Upsample(channels, False, dims)
+ self.x_upd = Upsample(channels, False, dims)
+ elif down:
+ self.h_upd = Downsample(channels, False, dims)
+ self.x_upd = Downsample(channels, False, dims)
+ else:
+ self.h_upd = self.x_upd = nn.Identity()
+
+ self.emb_layers = nn.Sequential(
+ nn.SiLU(),
+ linear(
+ emb_channels,
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
+ ),
+ )
+ self.out_layers = nn.Sequential(
+ normalization(self.out_channels),
+ nn.SiLU(),
+ nn.Dropout(p=dropout),
+ zero_module(
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
+ ),
+ )
+
+ if self.out_channels == channels:
+ self.skip_connection = nn.Identity()
+ elif use_conv:
+ self.skip_connection = conv_nd(
+ dims, channels, self.out_channels, 3, padding=1
+ )
+ else:
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
+
+ def forward(self, x, emb):
+ """
+ Apply the block to a Tensor, conditioned on a timestep embedding.
+ :param x: an [N x C x ...] Tensor of features.
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
+ :return: an [N x C x ...] Tensor of outputs.
+ """
+ return checkpoint(
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
+ )
+
+
+ def _forward(self, x, emb):
+ if self.updown:
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
+ h = in_rest(x)
+ h = self.h_upd(h)
+ x = self.x_upd(x)
+ h = in_conv(h)
+ else:
+ h = self.in_layers(x)
+ emb_out = self.emb_layers(emb).type(h.dtype)
+ while len(emb_out.shape) < len(h.shape):
+ emb_out = emb_out[..., None]
+ if self.use_scale_shift_norm:
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
+ scale, shift = th.chunk(emb_out, 2, dim=1)
+ h = out_norm(h) * (1 + scale) + shift
+ h = out_rest(h)
+ else:
+ h = h + emb_out
+ h = self.out_layers(h)
+ return self.skip_connection(x) + h
+
+
+class AttentionBlock(nn.Module):
+ """
+ An attention block that allows spatial positions to attend to each other.
+ Originally ported from here, but adapted to the N-d case.
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
+ """
+
+ def __init__(
+ self,
+ channels,
+ num_heads=1,
+ num_head_channels=-1,
+ use_checkpoint=False,
+ use_new_attention_order=False,
+ ):
+ super().__init__()
+ self.channels = channels
+ if num_head_channels == -1:
+ self.num_heads = num_heads
+ else:
+ assert (
+ channels % num_head_channels == 0
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
+ self.num_heads = channels // num_head_channels
+ self.use_checkpoint = use_checkpoint
+ self.norm = normalization(channels)
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
+ if use_new_attention_order:
+ # split qkv before split heads
+ self.attention = QKVAttention(self.num_heads)
+ else:
+ # split heads before split qkv
+ self.attention = QKVAttentionLegacy(self.num_heads)
+
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
+
+ def forward(self, x):
+ return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
+ #return pt_checkpoint(self._forward, x) # pytorch
+
+ def _forward(self, x):
+ b, c, *spatial = x.shape
+ x = x.reshape(b, c, -1)
+ qkv = self.qkv(self.norm(x))
+ h = self.attention(qkv)
+ h = self.proj_out(h)
+ return (x + h).reshape(b, c, *spatial)
+
+
+def count_flops_attn(model, _x, y):
+ """
+ A counter for the `thop` package to count the operations in an
+ attention operation.
+ Meant to be used like:
+ macs, params = thop.profile(
+ model,
+ inputs=(inputs, timestamps),
+ custom_ops={QKVAttention: QKVAttention.count_flops},
+ )
+ """
+ b, c, *spatial = y[0].shape
+ num_spatial = int(np.prod(spatial))
+ # We perform two matmuls with the same number of ops.
+ # The first computes the weight matrix, the second computes
+ # the combination of the value vectors.
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
+ model.total_ops += th.DoubleTensor([matmul_ops])
+
+
+class QKVAttentionLegacy(nn.Module):
+ """
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
+ """
+
+ def __init__(self, n_heads):
+ super().__init__()
+ self.n_heads = n_heads
+
+ def forward(self, qkv):
+ """
+ Apply QKV attention.
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
+ :return: an [N x (H * C) x T] tensor after attention.
+ """
+ bs, width, length = qkv.shape
+ assert width % (3 * self.n_heads) == 0
+ ch = width // (3 * self.n_heads)
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
+ scale = 1 / math.sqrt(math.sqrt(ch))
+ weight = th.einsum(
+ "bct,bcs->bts", q * scale, k * scale
+ ) # More stable with f16 than dividing afterwards
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+ a = th.einsum("bts,bcs->bct", weight, v)
+ return a.reshape(bs, -1, length)
+
+ @staticmethod
+ def count_flops(model, _x, y):
+ return count_flops_attn(model, _x, y)
+
+
+class QKVAttention(nn.Module):
+ """
+ A module which performs QKV attention and splits in a different order.
+ """
+
+ def __init__(self, n_heads):
+ super().__init__()
+ self.n_heads = n_heads
+
+ def forward(self, qkv):
+ """
+ Apply QKV attention.
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
+ :return: an [N x (H * C) x T] tensor after attention.
+ """
+ bs, width, length = qkv.shape
+ assert width % (3 * self.n_heads) == 0
+ ch = width // (3 * self.n_heads)
+ q, k, v = qkv.chunk(3, dim=1)
+ scale = 1 / math.sqrt(math.sqrt(ch))
+ weight = th.einsum(
+ "bct,bcs->bts",
+ (q * scale).view(bs * self.n_heads, ch, length),
+ (k * scale).view(bs * self.n_heads, ch, length),
+ ) # More stable with f16 than dividing afterwards
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
+ return a.reshape(bs, -1, length)
+
+ @staticmethod
+ def count_flops(model, _x, y):
+ return count_flops_attn(model, _x, y)
+
+
+class UNetModel(nn.Module):
+ """
+ The full UNet model with attention and timestep embedding.
+ :param in_channels: channels in the input Tensor.
+ :param model_channels: base channel count for the model.
+ :param out_channels: channels in the output Tensor.
+ :param num_res_blocks: number of residual blocks per downsample.
+ :param attention_resolutions: a collection of downsample rates at which
+ attention will take place. May be a set, list, or tuple.
+ For example, if this contains 4, then at 4x downsampling, attention
+ will be used.
+ :param dropout: the dropout probability.
+ :param channel_mult: channel multiplier for each level of the UNet.
+ :param conv_resample: if True, use learned convolutions for upsampling and
+ downsampling.
+ :param dims: determines if the signal is 1D, 2D, or 3D.
+ :param num_classes: if specified (as an int), then this model will be
+ class-conditional with `num_classes` classes.
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
+ :param num_heads: the number of attention heads in each attention layer.
+ :param num_heads_channels: if specified, ignore num_heads and instead use
+ a fixed channel width per attention head.
+ :param num_heads_upsample: works with num_heads to set a different number
+ of heads for upsampling. Deprecated.
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
+ :param resblock_updown: use residual blocks for up/downsampling.
+ :param use_new_attention_order: use a different attention pattern for potentially
+ increased efficiency.
+ """
+
+ def __init__(
+ self,
+ image_size,
+ in_channels,
+ model_channels,
+ out_channels,
+ num_res_blocks,
+ attention_resolutions,
+ dropout=0,
+ channel_mult=(1, 2, 4, 8),
+ conv_resample=True,
+ dims=2,
+ num_classes=None,
+ use_checkpoint=False,
+ use_fp16=False,
+ num_heads=-1,
+ num_head_channels=-1,
+ num_heads_upsample=-1,
+ use_scale_shift_norm=False,
+ resblock_updown=False,
+ use_new_attention_order=False,
+ use_spatial_transformer=False, # custom transformer support
+ transformer_depth=1, # custom transformer support
+ context_dim=None, # custom transformer support
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
+ legacy=True,
+ disable_self_attentions=None,
+ num_attention_blocks=None,
+ disable_middle_self_attn=False,
+ use_linear_in_transformer=False,
+ ):
+ super().__init__()
+ if use_spatial_transformer:
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
+
+ if context_dim is not None:
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
+ from omegaconf.listconfig import ListConfig
+ if type(context_dim) == ListConfig:
+ context_dim = list(context_dim)
+
+ if num_heads_upsample == -1:
+ num_heads_upsample = num_heads
+
+ if num_heads == -1:
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
+
+ if num_head_channels == -1:
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
+
+ self.image_size = image_size
+ self.in_channels = in_channels
+ self.model_channels = model_channels
+ self.out_channels = out_channels
+ if isinstance(num_res_blocks, int):
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
+ else:
+ if len(num_res_blocks) != len(channel_mult):
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
+ "as a list/tuple (per-level) with the same length as channel_mult")
+ self.num_res_blocks = num_res_blocks
+ if disable_self_attentions is not None:
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
+ assert len(disable_self_attentions) == len(channel_mult)
+ if num_attention_blocks is not None:
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
+ print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
+ f"attention will still not be set.")
+
+ self.attention_resolutions = attention_resolutions
+ self.dropout = dropout
+ self.channel_mult = channel_mult
+ self.conv_resample = conv_resample
+ self.num_classes = num_classes
+ self.use_checkpoint = use_checkpoint
+ self.dtype = th.float16 if use_fp16 else th.float32
+ self.num_heads = num_heads
+ self.num_head_channels = num_head_channels
+ self.num_heads_upsample = num_heads_upsample
+ self.predict_codebook_ids = n_embed is not None
+
+ time_embed_dim = model_channels * 4
+ self.time_embed = nn.Sequential(
+ linear(model_channels, time_embed_dim),
+ nn.SiLU(),
+ linear(time_embed_dim, time_embed_dim),
+ )
+
+ if self.num_classes is not None:
+ if isinstance(self.num_classes, int):
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
+ elif self.num_classes == "continuous":
+ print("setting up linear c_adm embedding layer")
+ self.label_emb = nn.Linear(1, time_embed_dim)
+ else:
+ raise ValueError()
+
+ self.input_blocks = nn.ModuleList(
+ [
+ TimestepEmbedSequential(
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
+ )
+ ]
+ )
+ self._feature_size = model_channels
+ input_block_chans = [model_channels]
+ ch = model_channels
+ ds = 1
+ for level, mult in enumerate(channel_mult):
+ for nr in range(self.num_res_blocks[level]):
+ layers = [
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=mult * model_channels,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ )
+ ]
+ ch = mult * model_channels
+ if ds in attention_resolutions:
+ if num_head_channels == -1:
+ dim_head = ch // num_heads
+ else:
+ num_heads = ch // num_head_channels
+ dim_head = num_head_channels
+ if legacy:
+ #num_heads = 1
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+ if exists(disable_self_attentions):
+ disabled_sa = disable_self_attentions[level]
+ else:
+ disabled_sa = False
+
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
+ layers.append(
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=dim_head,
+ use_new_attention_order=use_new_attention_order,
+ ) if not use_spatial_transformer else SpatialTransformer(
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
+ use_checkpoint=use_checkpoint
+ )
+ )
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
+ self._feature_size += ch
+ input_block_chans.append(ch)
+ if level != len(channel_mult) - 1:
+ out_ch = ch
+ self.input_blocks.append(
+ TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=out_ch,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ down=True,
+ )
+ if resblock_updown
+ else Downsample(
+ ch, conv_resample, dims=dims, out_channels=out_ch
+ )
+ )
+ )
+ ch = out_ch
+ input_block_chans.append(ch)
+ ds *= 2
+ self._feature_size += ch
+
+ if num_head_channels == -1:
+ dim_head = ch // num_heads
+ else:
+ num_heads = ch // num_head_channels
+ dim_head = num_head_channels
+ if legacy:
+ #num_heads = 1
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+ self.middle_block = TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=dim_head,
+ use_new_attention_order=use_new_attention_order,
+ ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
+ disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
+ use_checkpoint=use_checkpoint
+ ),
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ )
+ self._feature_size += ch
+
+ self.output_blocks = nn.ModuleList([])
+ for level, mult in list(enumerate(channel_mult))[::-1]:
+ for i in range(self.num_res_blocks[level] + 1):
+ ich = input_block_chans.pop()
+ layers = [
+ ResBlock(
+ ch + ich,
+ time_embed_dim,
+ dropout,
+ out_channels=model_channels * mult,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ )
+ ]
+ ch = model_channels * mult
+ if ds in attention_resolutions:
+ if num_head_channels == -1:
+ dim_head = ch // num_heads
+ else:
+ num_heads = ch // num_head_channels
+ dim_head = num_head_channels
+ if legacy:
+ #num_heads = 1
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+ if exists(disable_self_attentions):
+ disabled_sa = disable_self_attentions[level]
+ else:
+ disabled_sa = False
+
+ if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
+ layers.append(
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads_upsample,
+ num_head_channels=dim_head,
+ use_new_attention_order=use_new_attention_order,
+ ) if not use_spatial_transformer else SpatialTransformer(
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
+ use_checkpoint=use_checkpoint
+ )
+ )
+ if level and i == self.num_res_blocks[level]:
+ out_ch = ch
+ layers.append(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=out_ch,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ up=True,
+ )
+ if resblock_updown
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
+ )
+ ds //= 2
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
+ self._feature_size += ch
+
+ self.out = nn.Sequential(
+ normalization(ch),
+ nn.SiLU(),
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
+ )
+ if self.predict_codebook_ids:
+ self.id_predictor = nn.Sequential(
+ normalization(ch),
+ conv_nd(dims, model_channels, n_embed, 1),
+ #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
+ )
+
+ def convert_to_fp16(self):
+ """
+ Convert the torso of the model to float16.
+ """
+ self.input_blocks.apply(convert_module_to_f16)
+ self.middle_block.apply(convert_module_to_f16)
+ self.output_blocks.apply(convert_module_to_f16)
+
+ def convert_to_fp32(self):
+ """
+ Convert the torso of the model to float32.
+ """
+ self.input_blocks.apply(convert_module_to_f32)
+ self.middle_block.apply(convert_module_to_f32)
+ self.output_blocks.apply(convert_module_to_f32)
+
+ def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
+ """
+ Apply the model to an input batch.
+ :param x: an [N x C x ...] Tensor of inputs.
+ :param timesteps: a 1-D batch of timesteps.
+ :param context: conditioning plugged in via crossattn
+ :param y: an [N] Tensor of labels, if class-conditional.
+ :return: an [N x C x ...] Tensor of outputs.
+ """
+ assert (y is not None) == (
+ self.num_classes is not None
+ ), "must specify y if and only if the model is class-conditional"
+ hs = []
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
+ emb = self.time_embed(t_emb)
+
+ if self.num_classes is not None:
+ assert y.shape[0] == x.shape[0]
+ emb = emb + self.label_emb(y)
+
+ h = x.type(self.dtype)
+ for module in self.input_blocks:
+ h = module(h, emb, context)
+ hs.append(h)
+ h = self.middle_block(h, emb, context)
+ for module in self.output_blocks:
+ h = th.cat([h, hs.pop()], dim=1)
+ h = module(h, emb, context)
+ h = h.type(x.dtype)
+ if self.predict_codebook_ids:
+ return self.id_predictor(h)
+ else:
+ return self.out(h)
diff --git a/ldm/modules/diffusionmodules/upscaling.py b/ldm/modules/diffusionmodules/upscaling.py
new file mode 100644
index 0000000000000000000000000000000000000000..03816662098ce1ffac79bd939b892e867ab91988
--- /dev/null
+++ b/ldm/modules/diffusionmodules/upscaling.py
@@ -0,0 +1,81 @@
+import torch
+import torch.nn as nn
+import numpy as np
+from functools import partial
+
+from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
+from ldm.util import default
+
+
+class AbstractLowScaleModel(nn.Module):
+ # for concatenating a downsampled image to the latent representation
+ def __init__(self, noise_schedule_config=None):
+ super(AbstractLowScaleModel, self).__init__()
+ if noise_schedule_config is not None:
+ self.register_schedule(**noise_schedule_config)
+
+ def register_schedule(self, beta_schedule="linear", timesteps=1000,
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
+ cosine_s=cosine_s)
+ alphas = 1. - betas
+ alphas_cumprod = np.cumprod(alphas, axis=0)
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+
+ timesteps, = betas.shape
+ self.num_timesteps = int(timesteps)
+ self.linear_start = linear_start
+ self.linear_end = linear_end
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
+
+ to_torch = partial(torch.tensor, dtype=torch.float32)
+
+ self.register_buffer('betas', to_torch(betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+ def q_sample(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
+
+ def forward(self, x):
+ return x, None
+
+ def decode(self, x):
+ return x
+
+
+class SimpleImageConcat(AbstractLowScaleModel):
+ # no noise level conditioning
+ def __init__(self):
+ super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
+ self.max_noise_level = 0
+
+ def forward(self, x):
+ # fix to constant noise level
+ return x, torch.zeros(x.shape[0], device=x.device).long()
+
+
+class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
+ def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
+ super().__init__(noise_schedule_config=noise_schedule_config)
+ self.max_noise_level = max_noise_level
+
+ def forward(self, x, noise_level=None):
+ if noise_level is None:
+ noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
+ else:
+ assert isinstance(noise_level, torch.Tensor)
+ z = self.q_sample(x, noise_level)
+ return z, noise_level
+
+
+
diff --git a/ldm/modules/diffusionmodules/util.py b/ldm/modules/diffusionmodules/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..637363dfe34799e70cfdbcd11445212df9d9ca1f
--- /dev/null
+++ b/ldm/modules/diffusionmodules/util.py
@@ -0,0 +1,270 @@
+# adopted from
+# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
+# and
+# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+# and
+# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
+#
+# thanks!
+
+
+import os
+import math
+import torch
+import torch.nn as nn
+import numpy as np
+from einops import repeat
+
+from ldm.util import instantiate_from_config
+
+
+def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ if schedule == "linear":
+ betas = (
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
+ )
+
+ elif schedule == "cosine":
+ timesteps = (
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
+ )
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
+ alphas = torch.cos(alphas).pow(2)
+ alphas = alphas / alphas[0]
+ betas = 1 - alphas[1:] / alphas[:-1]
+ betas = np.clip(betas, a_min=0, a_max=0.999)
+
+ elif schedule == "sqrt_linear":
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
+ elif schedule == "sqrt":
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
+ else:
+ raise ValueError(f"schedule '{schedule}' unknown.")
+ return betas.numpy()
+
+
+def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
+ if ddim_discr_method == 'uniform':
+ c = num_ddpm_timesteps // num_ddim_timesteps
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
+ elif ddim_discr_method == 'quad':
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
+ else:
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
+
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
+ steps_out = ddim_timesteps + 1
+ if verbose:
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
+ return steps_out
+
+
+def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
+ # select alphas for computing the variance schedule
+ alphas = alphacums[ddim_timesteps]
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
+
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
+ if verbose:
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
+ print(f'For the chosen value of eta, which is {eta}, '
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
+ return sigmas, alphas, alphas_prev
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function,
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
+ :param num_diffusion_timesteps: the number of betas to produce.
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
+ produces the cumulative product of (1-beta) up to that
+ part of the diffusion process.
+ :param max_beta: the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+ """
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return np.array(betas)
+
+
+def extract_into_tensor(a, t, x_shape):
+ b, *_ = t.shape
+ out = a.gather(-1, t)
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
+
+
+def checkpoint(func, inputs, params, flag):
+ """
+ Evaluate a function without caching intermediate activations, allowing for
+ reduced memory at the expense of extra compute in the backward pass.
+ :param func: the function to evaluate.
+ :param inputs: the argument sequence to pass to `func`.
+ :param params: a sequence of parameters `func` depends on but does not
+ explicitly take as arguments.
+ :param flag: if False, disable gradient checkpointing.
+ """
+ if flag:
+ args = tuple(inputs) + tuple(params)
+ return CheckpointFunction.apply(func, len(inputs), *args)
+ else:
+ return func(*inputs)
+
+
+class CheckpointFunction(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, run_function, length, *args):
+ ctx.run_function = run_function
+ ctx.input_tensors = list(args[:length])
+ ctx.input_params = list(args[length:])
+ ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
+ "dtype": torch.get_autocast_gpu_dtype(),
+ "cache_enabled": torch.is_autocast_cache_enabled()}
+ with torch.no_grad():
+ output_tensors = ctx.run_function(*ctx.input_tensors)
+ return output_tensors
+
+ @staticmethod
+ def backward(ctx, *output_grads):
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
+ with torch.enable_grad(), \
+ torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
+ # Fixes a bug where the first op in run_function modifies the
+ # Tensor storage in place, which is not allowed for detach()'d
+ # Tensors.
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
+ output_tensors = ctx.run_function(*shallow_copies)
+ input_grads = torch.autograd.grad(
+ output_tensors,
+ ctx.input_tensors + ctx.input_params,
+ output_grads,
+ allow_unused=True,
+ )
+ del ctx.input_tensors
+ del ctx.input_params
+ del output_tensors
+ return (None, None) + input_grads
+
+
+def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
+ """
+ Create sinusoidal timestep embeddings.
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
+ These may be fractional.
+ :param dim: the dimension of the output.
+ :param max_period: controls the minimum frequency of the embeddings.
+ :return: an [N x dim] Tensor of positional embeddings.
+ """
+ if not repeat_only:
+ half = dim // 2
+ freqs = torch.exp(
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
+ ).to(device=timesteps.device)
+ args = timesteps[:, None].float() * freqs[None]
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
+ if dim % 2:
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
+ else:
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
+ return embedding
+
+
+def zero_module(module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+
+def scale_module(module, scale):
+ """
+ Scale the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().mul_(scale)
+ return module
+
+
+def mean_flat(tensor):
+ """
+ Take the mean over all non-batch dimensions.
+ """
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def normalization(channels):
+ """
+ Make a standard normalization layer.
+ :param channels: number of input channels.
+ :return: an nn.Module for normalization.
+ """
+ return GroupNorm32(32, channels)
+
+
+# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
+class SiLU(nn.Module):
+ def forward(self, x):
+ return x * torch.sigmoid(x)
+
+
+class GroupNorm32(nn.GroupNorm):
+ def forward(self, x):
+ return super().forward(x.float()).type(x.dtype)
+
+def conv_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D convolution module.
+ """
+ if dims == 1:
+ return nn.Conv1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.Conv2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.Conv3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+def linear(*args, **kwargs):
+ """
+ Create a linear module.
+ """
+ return nn.Linear(*args, **kwargs)
+
+
+def avg_pool_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D average pooling module.
+ """
+ if dims == 1:
+ return nn.AvgPool1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.AvgPool2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.AvgPool3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+class HybridConditioner(nn.Module):
+
+ def __init__(self, c_concat_config, c_crossattn_config):
+ super().__init__()
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
+
+ def forward(self, c_concat, c_crossattn):
+ c_concat = self.concat_conditioner(c_concat)
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
+
+
+def noise_like(shape, device, repeat=False):
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
+ noise = lambda: torch.randn(shape, device=device)
+ return repeat_noise() if repeat else noise()
\ No newline at end of file
diff --git a/ldm/modules/distributions/__init__.py b/ldm/modules/distributions/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/ldm/modules/distributions/distributions.py b/ldm/modules/distributions/distributions.py
new file mode 100644
index 0000000000000000000000000000000000000000..f2b8ef901130efc171aa69742ca0244d94d3f2e9
--- /dev/null
+++ b/ldm/modules/distributions/distributions.py
@@ -0,0 +1,92 @@
+import torch
+import numpy as np
+
+
+class AbstractDistribution:
+ def sample(self):
+ raise NotImplementedError()
+
+ def mode(self):
+ raise NotImplementedError()
+
+
+class DiracDistribution(AbstractDistribution):
+ def __init__(self, value):
+ self.value = value
+
+ def sample(self):
+ return self.value
+
+ def mode(self):
+ return self.value
+
+
+class DiagonalGaussianDistribution(object):
+ def __init__(self, parameters, deterministic=False):
+ self.parameters = parameters
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
+ self.deterministic = deterministic
+ self.std = torch.exp(0.5 * self.logvar)
+ self.var = torch.exp(self.logvar)
+ if self.deterministic:
+ self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
+
+ def sample(self):
+ x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
+ return x
+
+ def kl(self, other=None):
+ if self.deterministic:
+ return torch.Tensor([0.])
+ else:
+ if other is None:
+ return 0.5 * torch.sum(torch.pow(self.mean, 2)
+ + self.var - 1.0 - self.logvar,
+ dim=[1, 2, 3])
+ else:
+ return 0.5 * torch.sum(
+ torch.pow(self.mean - other.mean, 2) / other.var
+ + self.var / other.var - 1.0 - self.logvar + other.logvar,
+ dim=[1, 2, 3])
+
+ def nll(self, sample, dims=[1,2,3]):
+ if self.deterministic:
+ return torch.Tensor([0.])
+ logtwopi = np.log(2.0 * np.pi)
+ return 0.5 * torch.sum(
+ logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
+ dim=dims)
+
+ def mode(self):
+ return self.mean
+
+
+def normal_kl(mean1, logvar1, mean2, logvar2):
+ """
+ source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
+ Compute the KL divergence between two gaussians.
+ Shapes are automatically broadcasted, so batches can be compared to
+ scalars, among other use cases.
+ """
+ tensor = None
+ for obj in (mean1, logvar1, mean2, logvar2):
+ if isinstance(obj, torch.Tensor):
+ tensor = obj
+ break
+ assert tensor is not None, "at least one argument must be a Tensor"
+
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
+ # Tensors, but it does not work for torch.exp().
+ logvar1, logvar2 = [
+ x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
+ for x in (logvar1, logvar2)
+ ]
+
+ return 0.5 * (
+ -1.0
+ + logvar2
+ - logvar1
+ + torch.exp(logvar1 - logvar2)
+ + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
+ )
diff --git a/ldm/modules/ema.py b/ldm/modules/ema.py
new file mode 100644
index 0000000000000000000000000000000000000000..bded25019b9bcbcd0260f0b8185f8c7859ca58c4
--- /dev/null
+++ b/ldm/modules/ema.py
@@ -0,0 +1,80 @@
+import torch
+from torch import nn
+
+
+class LitEma(nn.Module):
+ def __init__(self, model, decay=0.9999, use_num_upates=True):
+ super().__init__()
+ if decay < 0.0 or decay > 1.0:
+ raise ValueError('Decay must be between 0 and 1')
+
+ self.m_name2s_name = {}
+ self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
+ self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
+ else torch.tensor(-1, dtype=torch.int))
+
+ for name, p in model.named_parameters():
+ if p.requires_grad:
+ # remove as '.'-character is not allowed in buffers
+ s_name = name.replace('.', '')
+ self.m_name2s_name.update({name: s_name})
+ self.register_buffer(s_name, p.clone().detach().data)
+
+ self.collected_params = []
+
+ def reset_num_updates(self):
+ del self.num_updates
+ self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
+
+ def forward(self, model):
+ decay = self.decay
+
+ if self.num_updates >= 0:
+ self.num_updates += 1
+ decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
+
+ one_minus_decay = 1.0 - decay
+
+ with torch.no_grad():
+ m_param = dict(model.named_parameters())
+ shadow_params = dict(self.named_buffers())
+
+ for key in m_param:
+ if m_param[key].requires_grad:
+ sname = self.m_name2s_name[key]
+ shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
+ shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
+ else:
+ assert not key in self.m_name2s_name
+
+ def copy_to(self, model):
+ m_param = dict(model.named_parameters())
+ shadow_params = dict(self.named_buffers())
+ for key in m_param:
+ if m_param[key].requires_grad:
+ m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
+ else:
+ assert not key in self.m_name2s_name
+
+ def store(self, parameters):
+ """
+ Save the current parameters for restoring later.
+ Args:
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+ temporarily stored.
+ """
+ self.collected_params = [param.clone() for param in parameters]
+
+ def restore(self, parameters):
+ """
+ Restore the parameters stored with the `store` method.
+ Useful to validate the model with EMA parameters without affecting the
+ original optimization process. Store the parameters before the
+ `copy_to` method. After validation (or model saving), use this to
+ restore the former parameters.
+ Args:
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+ updated with the stored parameters.
+ """
+ for c_param, param in zip(self.collected_params, parameters):
+ param.data.copy_(c_param.data)
diff --git a/ldm/modules/encoders/__init__.py b/ldm/modules/encoders/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/ldm/modules/encoders/modules.py b/ldm/modules/encoders/modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..a7bf7d0844b852978209e563efac0d5e73352f52
--- /dev/null
+++ b/ldm/modules/encoders/modules.py
@@ -0,0 +1,322 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.utils.checkpoint import checkpoint
+from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
+import torchvision.transforms as T
+import open_clip
+from ldm.util import default, count_params
+from PIL import Image
+from open_clip.transform import image_transform
+import sys
+
+
+class LayerNormFp32(nn.LayerNorm):
+ """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
+
+ def forward(self, x: torch.Tensor):
+ orig_type = x.dtype
+ x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps)
+ return x.to(orig_type)
+
+class LayerNorm(nn.LayerNorm):
+ """Subclass torch's LayerNorm (with cast back to input dtype)."""
+
+ def forward(self, x: torch.Tensor):
+ orig_type = x.dtype
+ x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
+ return x.to(orig_type)
+
+class AbstractEncoder(nn.Module):
+ def __init__(self):
+ super().__init__()
+
+ def encode(self, *args, **kwargs):
+ raise NotImplementedError
+
+
+class IdentityEncoder(AbstractEncoder):
+
+ def encode(self, x):
+ return x
+
+
+class ClassEmbedder(nn.Module):
+ def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
+ super().__init__()
+ self.key = key
+ self.embedding = nn.Embedding(n_classes, embed_dim)
+ self.n_classes = n_classes
+ self.ucg_rate = ucg_rate
+
+ def forward(self, batch, key=None, disable_dropout=False):
+ if key is None:
+ key = self.key
+ # this is for use in crossattn
+ c = batch[key][:, None]
+ if self.ucg_rate > 0. and not disable_dropout:
+ mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
+ c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1)
+ c = c.long()
+ c = self.embedding(c)
+ return c
+
+ def get_unconditional_conditioning(self, bs, device="cuda"):
+ uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
+ uc = torch.ones((bs,), device=device) * uc_class
+ uc = {self.key: uc}
+ return uc
+
+
+def disabled_train(self, mode=True):
+ """Overwrite model.train with this function to make sure train/eval mode
+ does not change anymore."""
+ return self
+
+
+class FrozenT5Embedder(AbstractEncoder):
+ """Uses the T5 transformer encoder for text"""
+ def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
+ super().__init__()
+ self.tokenizer = T5Tokenizer.from_pretrained(version)
+ self.transformer = T5EncoderModel.from_pretrained(version)
+ self.device = device
+ self.max_length = max_length # TODO: typical value?
+ if freeze:
+ self.freeze()
+
+ def freeze(self):
+ self.transformer = self.transformer.eval()
+ #self.train = disabled_train
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"].to(self.device)
+ outputs = self.transformer(input_ids=tokens)
+
+ z = outputs.last_hidden_state
+ return z
+
+ def encode(self, text):
+ return self(text)
+
+
+class FrozenCLIPEmbedder(AbstractEncoder):
+ """Uses the CLIP transformer encoder for text (from huggingface)"""
+ LAYERS = [
+ "last",
+ "pooled",
+ "hidden"
+ ]
+ def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
+ freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
+ super().__init__()
+ assert layer in self.LAYERS
+ self.tokenizer = CLIPTokenizer.from_pretrained(version)
+ self.transformer = CLIPTextModel.from_pretrained(version)
+ self.device = device
+ self.max_length = max_length
+ if freeze:
+ self.freeze()
+ self.layer = layer
+ self.layer_idx = layer_idx
+ if layer == "hidden":
+ assert layer_idx is not None
+ assert 0 <= abs(layer_idx) <= 12
+
+ def freeze(self):
+ self.transformer = self.transformer.eval()
+ #self.train = disabled_train
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"].to(self.device)
+ outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
+ if self.layer == "last":
+ z = outputs.last_hidden_state
+ elif self.layer == "pooled":
+ z = outputs.pooler_output[:, None, :]
+ else:
+ z = outputs.hidden_states[self.layer_idx]
+ return z
+
+ def encode(self, text):
+ return self(text)
+
+
+class FrozenOpenCLIPEmbedder(AbstractEncoder):
+ """
+ Uses the OpenCLIP transformer encoder for text
+ """
+ LAYERS = [
+ #"pooled",
+ "last",
+ "penultimate"
+ ]
+ def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
+ freeze=True, layer="last"):
+ super().__init__()
+ assert layer in self.LAYERS
+ model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
+ del model.visual
+ self.model = model
+
+ self.device = device
+ self.max_length = max_length
+ if freeze:
+ self.freeze()
+ self.layer = layer
+ if self.layer == "last":
+ self.layer_idx = 0
+ elif self.layer == "penultimate":
+ self.layer_idx = 1
+ else:
+ raise NotImplementedError()
+
+ def freeze(self):
+ self.model = self.model.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text):
+ tokens = open_clip.tokenize(text)
+ z = self.encode_with_transformer(tokens.to(self.device))
+ return z
+
+ def encode_with_transformer(self, text):
+ x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
+ x = x + self.model.positional_embedding
+ x = x.permute(1, 0, 2) # NLD -> LND
+ x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
+ x = x.permute(1, 0, 2) # LND -> NLD
+ x = self.model.ln_final(x)
+ return x
+
+ def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
+ for i, r in enumerate(self.model.transformer.resblocks):
+ if i == len(self.model.transformer.resblocks) - self.layer_idx:
+ break
+ if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
+ x = checkpoint(r, x, attn_mask)
+ else:
+ x = r(x, attn_mask=attn_mask)
+ return x
+
+ def encode(self, text):
+ return self(text)
+
+
+
+class FrozenCLIPT5Encoder(AbstractEncoder):
+ def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
+ clip_max_length=77, t5_max_length=77):
+ super().__init__()
+ self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
+ self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
+ print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
+ f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")
+
+ def encode(self, text):
+ return self(text)
+
+ def forward(self, text):
+ clip_z = self.clip_encoder.encode(text)
+ t5_z = self.t5_encoder.encode(text)
+ return [clip_z, t5_z]
+
+
+class FrozenOpenCLIPImageEncoder(AbstractEncoder):
+ """
+ Uses the OpenCLIP transformer encoder for image
+ """
+
+ def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", freeze=True):
+ super().__init__()
+ model, _, preprocess= open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
+ del model.transformer
+ self.model = model
+ self.model.visual.output_tokens = True
+ self.device = device
+ if freeze:
+ self.freeze()
+ self.image_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
+ self.image_std = torch.tensor([0.26862954, 0.26130258, 0.275777]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
+ self.projector_token = nn.Linear(1280,1024)
+ self.projector_embed = nn.Linear(1024,1024)
+
+ def freeze(self):
+ self.model.visual.eval()
+ for param in self.model.parameters():
+ param.requires_grad = False
+
+ def forward(self, image):
+ if isinstance(image,list):
+ image = torch.cat(image,0)
+ image = (image.to(self.device) - self.image_mean.to(self.device)) / self.image_std.to(self.device)
+ image_features, tokens = self.model.visual(image)
+ image_features = image_features.unsqueeze(1)
+ image_features = self.projector_embed(image_features)
+ tokens = self.projector_token(tokens)
+ hint = torch.cat([image_features,tokens],1)
+ return hint
+
+ def encode(self, image):
+ return self(image)
+
+sys.path.append("./dinov2")
+import hubconf
+from omegaconf import OmegaConf
+config_path = './configs/anydoor.yaml'
+config = OmegaConf.load(config_path)
+DINOv2_weight_path = config.model.params.cond_stage_config.weight
+
+class FrozenDinoV2Encoder(AbstractEncoder):
+ """
+ Uses the DINOv2 encoder for image
+ """
+ def __init__(self, device="cuda", freeze=True):
+ super().__init__()
+ dinov2 = hubconf.dinov2_vitg14()
+ #state_dict = torch.load(DINOv2_weight_path)
+ #dinov2.load_state_dict(state_dict, strict=False)
+ self.model = dinov2.to(device)
+ self.device = device
+ if freeze:
+ self.freeze()
+ self.image_mean = torch.tensor([0.485, 0.456, 0.406]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
+ self.image_std = torch.tensor([0.229, 0.224, 0.225]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
+ self.projector = nn.Linear(1536,1024)
+
+ def freeze(self):
+ self.model.eval()
+ for param in self.model.parameters():
+ param.requires_grad = False
+
+ def forward(self, image):
+ if isinstance(image,list):
+ image = torch.cat(image,0)
+
+ image = (image.to(self.device) - self.image_mean.to(self.device)) / self.image_std.to(self.device)
+ features = self.model.forward_features(image)
+ tokens = features["x_norm_patchtokens"]
+ image_features = features["x_norm_clstoken"]
+ image_features = image_features.unsqueeze(1)
+ hint = torch.cat([image_features,tokens],1) # 8,257,1024
+ hint = self.projector(hint)
+ return hint
+
+ def encode(self, image):
+ return self(image)
+
+
+
+
+
+
+
diff --git a/ldm/modules/image_degradation/__init__.py b/ldm/modules/image_degradation/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..7836cada81f90ded99c58d5942eea4c3477f58fc
--- /dev/null
+++ b/ldm/modules/image_degradation/__init__.py
@@ -0,0 +1,2 @@
+from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
+from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
diff --git a/ldm/modules/image_degradation/bsrgan.py b/ldm/modules/image_degradation/bsrgan.py
new file mode 100644
index 0000000000000000000000000000000000000000..32ef56169978e550090261cddbcf5eb611a6173b
--- /dev/null
+++ b/ldm/modules/image_degradation/bsrgan.py
@@ -0,0 +1,730 @@
+# -*- coding: utf-8 -*-
+"""
+# --------------------------------------------
+# Super-Resolution
+# --------------------------------------------
+#
+# Kai Zhang (cskaizhang@gmail.com)
+# https://github.com/cszn
+# From 2019/03--2021/08
+# --------------------------------------------
+"""
+
+import numpy as np
+import cv2
+import torch
+
+from functools import partial
+import random
+from scipy import ndimage
+import scipy
+import scipy.stats as ss
+from scipy.interpolate import interp2d
+from scipy.linalg import orth
+import albumentations
+
+import ldm.modules.image_degradation.utils_image as util
+
+
+def modcrop_np(img, sf):
+ '''
+ Args:
+ img: numpy image, WxH or WxHxC
+ sf: scale factor
+ Return:
+ cropped image
+ '''
+ w, h = img.shape[:2]
+ im = np.copy(img)
+ return im[:w - w % sf, :h - h % sf, ...]
+
+
+"""
+# --------------------------------------------
+# anisotropic Gaussian kernels
+# --------------------------------------------
+"""
+
+
+def analytic_kernel(k):
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
+ k_size = k.shape[0]
+ # Calculate the big kernels size
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
+ # Loop over the small kernel to fill the big one
+ for r in range(k_size):
+ for c in range(k_size):
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
+ crop = k_size // 2
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
+ # Normalize to 1
+ return cropped_big_k / cropped_big_k.sum()
+
+
+def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
+ """ generate an anisotropic Gaussian kernel
+ Args:
+ ksize : e.g., 15, kernel size
+ theta : [0, pi], rotation angle range
+ l1 : [0.1,50], scaling of eigenvalues
+ l2 : [0.1,l1], scaling of eigenvalues
+ If l1 = l2, will get an isotropic Gaussian kernel.
+ Returns:
+ k : kernel
+ """
+
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
+ D = np.array([[l1, 0], [0, l2]])
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
+
+ return k
+
+
+def gm_blur_kernel(mean, cov, size=15):
+ center = size / 2.0 + 0.5
+ k = np.zeros([size, size])
+ for y in range(size):
+ for x in range(size):
+ cy = y - center + 1
+ cx = x - center + 1
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
+
+ k = k / np.sum(k)
+ return k
+
+
+def shift_pixel(x, sf, upper_left=True):
+ """shift pixel for super-resolution with different scale factors
+ Args:
+ x: WxHxC or WxH
+ sf: scale factor
+ upper_left: shift direction
+ """
+ h, w = x.shape[:2]
+ shift = (sf - 1) * 0.5
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
+ if upper_left:
+ x1 = xv + shift
+ y1 = yv + shift
+ else:
+ x1 = xv - shift
+ y1 = yv - shift
+
+ x1 = np.clip(x1, 0, w - 1)
+ y1 = np.clip(y1, 0, h - 1)
+
+ if x.ndim == 2:
+ x = interp2d(xv, yv, x)(x1, y1)
+ if x.ndim == 3:
+ for i in range(x.shape[-1]):
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
+
+ return x
+
+
+def blur(x, k):
+ '''
+ x: image, NxcxHxW
+ k: kernel, Nx1xhxw
+ '''
+ n, c = x.shape[:2]
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
+ k = k.repeat(1, c, 1, 1)
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
+ x = x.view(1, -1, x.shape[2], x.shape[3])
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
+ x = x.view(n, c, x.shape[2], x.shape[3])
+
+ return x
+
+
+def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
+ """"
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
+ # Kai Zhang
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
+ # max_var = 2.5 * sf
+ """
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
+ theta = np.random.rand() * np.pi # random theta
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
+
+ # Set COV matrix using Lambdas and Theta
+ LAMBDA = np.diag([lambda_1, lambda_2])
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
+ [np.sin(theta), np.cos(theta)]])
+ SIGMA = Q @ LAMBDA @ Q.T
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
+
+ # Set expectation position (shifting kernel for aligned image)
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
+ MU = MU[None, None, :, None]
+
+ # Create meshgrid for Gaussian
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
+ Z = np.stack([X, Y], 2)[:, :, :, None]
+
+ # Calcualte Gaussian for every pixel of the kernel
+ ZZ = Z - MU
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
+
+ # shift the kernel so it will be centered
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
+
+ # Normalize the kernel and return
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
+ kernel = raw_kernel / np.sum(raw_kernel)
+ return kernel
+
+
+def fspecial_gaussian(hsize, sigma):
+ hsize = [hsize, hsize]
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
+ std = sigma
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
+ arg = -(x * x + y * y) / (2 * std * std)
+ h = np.exp(arg)
+ h[h < scipy.finfo(float).eps * h.max()] = 0
+ sumh = h.sum()
+ if sumh != 0:
+ h = h / sumh
+ return h
+
+
+def fspecial_laplacian(alpha):
+ alpha = max([0, min([alpha, 1])])
+ h1 = alpha / (alpha + 1)
+ h2 = (1 - alpha) / (alpha + 1)
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
+ h = np.array(h)
+ return h
+
+
+def fspecial(filter_type, *args, **kwargs):
+ '''
+ python code from:
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
+ '''
+ if filter_type == 'gaussian':
+ return fspecial_gaussian(*args, **kwargs)
+ if filter_type == 'laplacian':
+ return fspecial_laplacian(*args, **kwargs)
+
+
+"""
+# --------------------------------------------
+# degradation models
+# --------------------------------------------
+"""
+
+
+def bicubic_degradation(x, sf=3):
+ '''
+ Args:
+ x: HxWxC image, [0, 1]
+ sf: down-scale factor
+ Return:
+ bicubicly downsampled LR image
+ '''
+ x = util.imresize_np(x, scale=1 / sf)
+ return x
+
+
+def srmd_degradation(x, k, sf=3):
+ ''' blur + bicubic downsampling
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2018learning,
+ title={Learning a single convolutional super-resolution network for multiple degradations},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={3262--3271},
+ year={2018}
+ }
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
+ x = bicubic_degradation(x, sf=sf)
+ return x
+
+
+def dpsr_degradation(x, k, sf=3):
+ ''' bicubic downsampling + blur
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2019deep,
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={1671--1681},
+ year={2019}
+ }
+ '''
+ x = bicubic_degradation(x, sf=sf)
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ return x
+
+
+def classical_degradation(x, k, sf=3):
+ ''' blur + downsampling
+ Args:
+ x: HxWxC image, [0, 1]/[0, 255]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
+ st = 0
+ return x[st::sf, st::sf, ...]
+
+
+def add_sharpening(img, weight=0.5, radius=50, threshold=10):
+ """USM sharpening. borrowed from real-ESRGAN
+ Input image: I; Blurry image: B.
+ 1. K = I + weight * (I - B)
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
+ 3. Blur mask:
+ 4. Out = Mask * K + (1 - Mask) * I
+ Args:
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
+ weight (float): Sharp weight. Default: 1.
+ radius (float): Kernel size of Gaussian blur. Default: 50.
+ threshold (int):
+ """
+ if radius % 2 == 0:
+ radius += 1
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
+ residual = img - blur
+ mask = np.abs(residual) * 255 > threshold
+ mask = mask.astype('float32')
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
+
+ K = img + weight * residual
+ K = np.clip(K, 0, 1)
+ return soft_mask * K + (1 - soft_mask) * img
+
+
+def add_blur(img, sf=4):
+ wd2 = 4.0 + sf
+ wd = 2.0 + 0.2 * sf
+ if random.random() < 0.5:
+ l1 = wd2 * random.random()
+ l2 = wd2 * random.random()
+ k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
+ else:
+ k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
+ img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
+
+ return img
+
+
+def add_resize(img, sf=4):
+ rnum = np.random.rand()
+ if rnum > 0.8: # up
+ sf1 = random.uniform(1, 2)
+ elif rnum < 0.7: # down
+ sf1 = random.uniform(0.5 / sf, 1)
+ else:
+ sf1 = 1.0
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ return img
+
+
+# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+# noise_level = random.randint(noise_level1, noise_level2)
+# rnum = np.random.rand()
+# if rnum > 0.6: # add color Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+# elif rnum < 0.4: # add grayscale Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+# else: # add noise
+# L = noise_level2 / 255.
+# D = np.diag(np.random.rand(3))
+# U = orth(np.random.rand(3, 3))
+# conv = np.dot(np.dot(np.transpose(U), D), U)
+# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+# img = np.clip(img, 0.0, 1.0)
+# return img
+
+def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ rnum = np.random.rand()
+ if rnum > 0.6: # add color Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4: # add grayscale Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else: # add noise
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_speckle_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ img = np.clip(img, 0.0, 1.0)
+ rnum = random.random()
+ if rnum > 0.6:
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4:
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else:
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_Poisson_noise(img):
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
+ if random.random() < 0.5:
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
+ else:
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
+ img += noise_gray[:, :, np.newaxis]
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_JPEG_noise(img):
+ quality_factor = random.randint(30, 95)
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
+ img = cv2.imdecode(encimg, 1)
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
+ return img
+
+
+def random_crop(lq, hq, sf=4, lq_patchsize=64):
+ h, w = lq.shape[:2]
+ rnd_h = random.randint(0, h - lq_patchsize)
+ rnd_w = random.randint(0, w - lq_patchsize)
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
+
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
+ return lq, hq
+
+
+def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = img.shape[:2]
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = img.shape[:2]
+
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+ hq = img.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ img = util.imresize_np(img, 1 / 2, True)
+ img = np.clip(img, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ img = add_blur(img, sf=sf)
+
+ elif i == 1:
+ img = add_blur(img, sf=sf)
+
+ elif i == 2:
+ a, b = img.shape[1], img.shape[0]
+ # downsample2
+ if random.random() < 0.75:
+ sf1 = random.uniform(1, 2 * sf)
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ img = add_JPEG_noise(img)
+
+ elif i == 6:
+ # add processed camera sensor noise
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ img = add_JPEG_noise(img)
+
+ # random crop
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
+
+ return img, hq
+
+
+# todo no isp_model?
+def degradation_bsrgan_variant(image, sf=4, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ image = util.uint2single(image)
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = image.shape[:2]
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = image.shape[:2]
+
+ hq = image.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ image = util.imresize_np(image, 1 / 2, True)
+ image = np.clip(image, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ image = add_blur(image, sf=sf)
+
+ elif i == 1:
+ image = add_blur(image, sf=sf)
+
+ elif i == 2:
+ a, b = image.shape[1], image.shape[0]
+ # downsample2
+ if random.random() < 0.75:
+ sf1 = random.uniform(1, 2 * sf)
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ image = add_JPEG_noise(image)
+
+ # elif i == 6:
+ # # add processed camera sensor noise
+ # if random.random() < isp_prob and isp_model is not None:
+ # with torch.no_grad():
+ # img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ image = add_JPEG_noise(image)
+ image = util.single2uint(image)
+ example = {"image":image}
+ return example
+
+
+# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
+def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
+ """
+ This is an extended degradation model by combining
+ the degradation models of BSRGAN and Real-ESRGAN
+ ----------
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+ sf: scale factor
+ use_shuffle: the degradation shuffle
+ use_sharp: sharpening the img
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+
+ h1, w1 = img.shape[:2]
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = img.shape[:2]
+
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+ if use_sharp:
+ img = add_sharpening(img)
+ hq = img.copy()
+
+ if random.random() < shuffle_prob:
+ shuffle_order = random.sample(range(13), 13)
+ else:
+ shuffle_order = list(range(13))
+ # local shuffle for noise, JPEG is always the last one
+ shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
+ shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
+
+ poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
+
+ for i in shuffle_order:
+ if i == 0:
+ img = add_blur(img, sf=sf)
+ elif i == 1:
+ img = add_resize(img, sf=sf)
+ elif i == 2:
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+ elif i == 3:
+ if random.random() < poisson_prob:
+ img = add_Poisson_noise(img)
+ elif i == 4:
+ if random.random() < speckle_prob:
+ img = add_speckle_noise(img)
+ elif i == 5:
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+ elif i == 6:
+ img = add_JPEG_noise(img)
+ elif i == 7:
+ img = add_blur(img, sf=sf)
+ elif i == 8:
+ img = add_resize(img, sf=sf)
+ elif i == 9:
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+ elif i == 10:
+ if random.random() < poisson_prob:
+ img = add_Poisson_noise(img)
+ elif i == 11:
+ if random.random() < speckle_prob:
+ img = add_speckle_noise(img)
+ elif i == 12:
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+ else:
+ print('check the shuffle!')
+
+ # resize to desired size
+ img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+
+ # add final JPEG compression noise
+ img = add_JPEG_noise(img)
+
+ # random crop
+ img, hq = random_crop(img, hq, sf, lq_patchsize)
+
+ return img, hq
+
+
+if __name__ == '__main__':
+ print("hey")
+ img = util.imread_uint('utils/test.png', 3)
+ print(img)
+ img = util.uint2single(img)
+ print(img)
+ img = img[:448, :448]
+ h = img.shape[0] // 4
+ print("resizing to", h)
+ sf = 4
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
+ for i in range(20):
+ print(i)
+ img_lq = deg_fn(img)
+ print(img_lq)
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
+ print(img_lq.shape)
+ print("bicubic", img_lq_bicubic.shape)
+ print(img_hq.shape)
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
+ util.imsave(img_concat, str(i) + '.png')
+
+
diff --git a/ldm/modules/image_degradation/bsrgan_light.py b/ldm/modules/image_degradation/bsrgan_light.py
new file mode 100644
index 0000000000000000000000000000000000000000..808c7f882cb75e2ba2340d5b55881d11927351f0
--- /dev/null
+++ b/ldm/modules/image_degradation/bsrgan_light.py
@@ -0,0 +1,651 @@
+# -*- coding: utf-8 -*-
+import numpy as np
+import cv2
+import torch
+
+from functools import partial
+import random
+from scipy import ndimage
+import scipy
+import scipy.stats as ss
+from scipy.interpolate import interp2d
+from scipy.linalg import orth
+import albumentations
+
+import ldm.modules.image_degradation.utils_image as util
+
+"""
+# --------------------------------------------
+# Super-Resolution
+# --------------------------------------------
+#
+# Kai Zhang (cskaizhang@gmail.com)
+# https://github.com/cszn
+# From 2019/03--2021/08
+# --------------------------------------------
+"""
+
+def modcrop_np(img, sf):
+ '''
+ Args:
+ img: numpy image, WxH or WxHxC
+ sf: scale factor
+ Return:
+ cropped image
+ '''
+ w, h = img.shape[:2]
+ im = np.copy(img)
+ return im[:w - w % sf, :h - h % sf, ...]
+
+
+"""
+# --------------------------------------------
+# anisotropic Gaussian kernels
+# --------------------------------------------
+"""
+
+
+def analytic_kernel(k):
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
+ k_size = k.shape[0]
+ # Calculate the big kernels size
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
+ # Loop over the small kernel to fill the big one
+ for r in range(k_size):
+ for c in range(k_size):
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
+ crop = k_size // 2
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
+ # Normalize to 1
+ return cropped_big_k / cropped_big_k.sum()
+
+
+def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
+ """ generate an anisotropic Gaussian kernel
+ Args:
+ ksize : e.g., 15, kernel size
+ theta : [0, pi], rotation angle range
+ l1 : [0.1,50], scaling of eigenvalues
+ l2 : [0.1,l1], scaling of eigenvalues
+ If l1 = l2, will get an isotropic Gaussian kernel.
+ Returns:
+ k : kernel
+ """
+
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
+ D = np.array([[l1, 0], [0, l2]])
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
+
+ return k
+
+
+def gm_blur_kernel(mean, cov, size=15):
+ center = size / 2.0 + 0.5
+ k = np.zeros([size, size])
+ for y in range(size):
+ for x in range(size):
+ cy = y - center + 1
+ cx = x - center + 1
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
+
+ k = k / np.sum(k)
+ return k
+
+
+def shift_pixel(x, sf, upper_left=True):
+ """shift pixel for super-resolution with different scale factors
+ Args:
+ x: WxHxC or WxH
+ sf: scale factor
+ upper_left: shift direction
+ """
+ h, w = x.shape[:2]
+ shift = (sf - 1) * 0.5
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
+ if upper_left:
+ x1 = xv + shift
+ y1 = yv + shift
+ else:
+ x1 = xv - shift
+ y1 = yv - shift
+
+ x1 = np.clip(x1, 0, w - 1)
+ y1 = np.clip(y1, 0, h - 1)
+
+ if x.ndim == 2:
+ x = interp2d(xv, yv, x)(x1, y1)
+ if x.ndim == 3:
+ for i in range(x.shape[-1]):
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
+
+ return x
+
+
+def blur(x, k):
+ '''
+ x: image, NxcxHxW
+ k: kernel, Nx1xhxw
+ '''
+ n, c = x.shape[:2]
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
+ k = k.repeat(1, c, 1, 1)
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
+ x = x.view(1, -1, x.shape[2], x.shape[3])
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
+ x = x.view(n, c, x.shape[2], x.shape[3])
+
+ return x
+
+
+def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
+ """"
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
+ # Kai Zhang
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
+ # max_var = 2.5 * sf
+ """
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
+ theta = np.random.rand() * np.pi # random theta
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
+
+ # Set COV matrix using Lambdas and Theta
+ LAMBDA = np.diag([lambda_1, lambda_2])
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
+ [np.sin(theta), np.cos(theta)]])
+ SIGMA = Q @ LAMBDA @ Q.T
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
+
+ # Set expectation position (shifting kernel for aligned image)
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
+ MU = MU[None, None, :, None]
+
+ # Create meshgrid for Gaussian
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
+ Z = np.stack([X, Y], 2)[:, :, :, None]
+
+ # Calcualte Gaussian for every pixel of the kernel
+ ZZ = Z - MU
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
+
+ # shift the kernel so it will be centered
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
+
+ # Normalize the kernel and return
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
+ kernel = raw_kernel / np.sum(raw_kernel)
+ return kernel
+
+
+def fspecial_gaussian(hsize, sigma):
+ hsize = [hsize, hsize]
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
+ std = sigma
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
+ arg = -(x * x + y * y) / (2 * std * std)
+ h = np.exp(arg)
+ h[h < scipy.finfo(float).eps * h.max()] = 0
+ sumh = h.sum()
+ if sumh != 0:
+ h = h / sumh
+ return h
+
+
+def fspecial_laplacian(alpha):
+ alpha = max([0, min([alpha, 1])])
+ h1 = alpha / (alpha + 1)
+ h2 = (1 - alpha) / (alpha + 1)
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
+ h = np.array(h)
+ return h
+
+
+def fspecial(filter_type, *args, **kwargs):
+ '''
+ python code from:
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
+ '''
+ if filter_type == 'gaussian':
+ return fspecial_gaussian(*args, **kwargs)
+ if filter_type == 'laplacian':
+ return fspecial_laplacian(*args, **kwargs)
+
+
+"""
+# --------------------------------------------
+# degradation models
+# --------------------------------------------
+"""
+
+
+def bicubic_degradation(x, sf=3):
+ '''
+ Args:
+ x: HxWxC image, [0, 1]
+ sf: down-scale factor
+ Return:
+ bicubicly downsampled LR image
+ '''
+ x = util.imresize_np(x, scale=1 / sf)
+ return x
+
+
+def srmd_degradation(x, k, sf=3):
+ ''' blur + bicubic downsampling
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2018learning,
+ title={Learning a single convolutional super-resolution network for multiple degradations},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={3262--3271},
+ year={2018}
+ }
+ '''
+ x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
+ x = bicubic_degradation(x, sf=sf)
+ return x
+
+
+def dpsr_degradation(x, k, sf=3):
+ ''' bicubic downsampling + blur
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2019deep,
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={1671--1681},
+ year={2019}
+ }
+ '''
+ x = bicubic_degradation(x, sf=sf)
+ x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ return x
+
+
+def classical_degradation(x, k, sf=3):
+ ''' blur + downsampling
+ Args:
+ x: HxWxC image, [0, 1]/[0, 255]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ '''
+ x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
+ st = 0
+ return x[st::sf, st::sf, ...]
+
+
+def add_sharpening(img, weight=0.5, radius=50, threshold=10):
+ """USM sharpening. borrowed from real-ESRGAN
+ Input image: I; Blurry image: B.
+ 1. K = I + weight * (I - B)
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
+ 3. Blur mask:
+ 4. Out = Mask * K + (1 - Mask) * I
+ Args:
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
+ weight (float): Sharp weight. Default: 1.
+ radius (float): Kernel size of Gaussian blur. Default: 50.
+ threshold (int):
+ """
+ if radius % 2 == 0:
+ radius += 1
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
+ residual = img - blur
+ mask = np.abs(residual) * 255 > threshold
+ mask = mask.astype('float32')
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
+
+ K = img + weight * residual
+ K = np.clip(K, 0, 1)
+ return soft_mask * K + (1 - soft_mask) * img
+
+
+def add_blur(img, sf=4):
+ wd2 = 4.0 + sf
+ wd = 2.0 + 0.2 * sf
+
+ wd2 = wd2/4
+ wd = wd/4
+
+ if random.random() < 0.5:
+ l1 = wd2 * random.random()
+ l2 = wd2 * random.random()
+ k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
+ else:
+ k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
+ img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
+
+ return img
+
+
+def add_resize(img, sf=4):
+ rnum = np.random.rand()
+ if rnum > 0.8: # up
+ sf1 = random.uniform(1, 2)
+ elif rnum < 0.7: # down
+ sf1 = random.uniform(0.5 / sf, 1)
+ else:
+ sf1 = 1.0
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ return img
+
+
+# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+# noise_level = random.randint(noise_level1, noise_level2)
+# rnum = np.random.rand()
+# if rnum > 0.6: # add color Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+# elif rnum < 0.4: # add grayscale Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+# else: # add noise
+# L = noise_level2 / 255.
+# D = np.diag(np.random.rand(3))
+# U = orth(np.random.rand(3, 3))
+# conv = np.dot(np.dot(np.transpose(U), D), U)
+# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+# img = np.clip(img, 0.0, 1.0)
+# return img
+
+def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ rnum = np.random.rand()
+ if rnum > 0.6: # add color Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4: # add grayscale Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else: # add noise
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_speckle_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ img = np.clip(img, 0.0, 1.0)
+ rnum = random.random()
+ if rnum > 0.6:
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4:
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else:
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_Poisson_noise(img):
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
+ if random.random() < 0.5:
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
+ else:
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
+ img += noise_gray[:, :, np.newaxis]
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_JPEG_noise(img):
+ quality_factor = random.randint(80, 95)
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
+ img = cv2.imdecode(encimg, 1)
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
+ return img
+
+
+def random_crop(lq, hq, sf=4, lq_patchsize=64):
+ h, w = lq.shape[:2]
+ rnd_h = random.randint(0, h - lq_patchsize)
+ rnd_w = random.randint(0, w - lq_patchsize)
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
+
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
+ return lq, hq
+
+
+def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = img.shape[:2]
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = img.shape[:2]
+
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+ hq = img.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ img = util.imresize_np(img, 1 / 2, True)
+ img = np.clip(img, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ img = add_blur(img, sf=sf)
+
+ elif i == 1:
+ img = add_blur(img, sf=sf)
+
+ elif i == 2:
+ a, b = img.shape[1], img.shape[0]
+ # downsample2
+ if random.random() < 0.75:
+ sf1 = random.uniform(1, 2 * sf)
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ img = add_JPEG_noise(img)
+
+ elif i == 6:
+ # add processed camera sensor noise
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ img = add_JPEG_noise(img)
+
+ # random crop
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
+
+ return img, hq
+
+
+# todo no isp_model?
+def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ image = util.uint2single(image)
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = image.shape[:2]
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = image.shape[:2]
+
+ hq = image.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ image = util.imresize_np(image, 1 / 2, True)
+ image = np.clip(image, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ image = add_blur(image, sf=sf)
+
+ # elif i == 1:
+ # image = add_blur(image, sf=sf)
+
+ if i == 0:
+ pass
+
+ elif i == 2:
+ a, b = image.shape[1], image.shape[0]
+ # downsample2
+ if random.random() < 0.8:
+ sf1 = random.uniform(1, 2 * sf)
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
+
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ image = add_JPEG_noise(image)
+ #
+ # elif i == 6:
+ # # add processed camera sensor noise
+ # if random.random() < isp_prob and isp_model is not None:
+ # with torch.no_grad():
+ # img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ image = add_JPEG_noise(image)
+ image = util.single2uint(image)
+ if up:
+ image = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_CUBIC) # todo: random, as above? want to condition on it then
+ example = {"image": image}
+ return example
+
+
+
+
+if __name__ == '__main__':
+ print("hey")
+ img = util.imread_uint('utils/test.png', 3)
+ img = img[:448, :448]
+ h = img.shape[0] // 4
+ print("resizing to", h)
+ sf = 4
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
+ for i in range(20):
+ print(i)
+ img_hq = img
+ img_lq = deg_fn(img)["image"]
+ img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
+ print(img_lq)
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
+ print(img_lq.shape)
+ print("bicubic", img_lq_bicubic.shape)
+ print(img_hq.shape)
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
+ (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
+ util.imsave(img_concat, str(i) + '.png')
diff --git a/ldm/modules/image_degradation/utils/test.png b/ldm/modules/image_degradation/utils/test.png
new file mode 100644
index 0000000000000000000000000000000000000000..4249b43de0f22707758d13c240268a401642f6e6
Binary files /dev/null and b/ldm/modules/image_degradation/utils/test.png differ
diff --git a/ldm/modules/image_degradation/utils_image.py b/ldm/modules/image_degradation/utils_image.py
new file mode 100644
index 0000000000000000000000000000000000000000..0175f155ad900ae33c3c46ed87f49b352e3faf98
--- /dev/null
+++ b/ldm/modules/image_degradation/utils_image.py
@@ -0,0 +1,916 @@
+import os
+import math
+import random
+import numpy as np
+import torch
+import cv2
+from torchvision.utils import make_grid
+from datetime import datetime
+#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
+
+
+os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
+
+
+'''
+# --------------------------------------------
+# Kai Zhang (github: https://github.com/cszn)
+# 03/Mar/2019
+# --------------------------------------------
+# https://github.com/twhui/SRGAN-pyTorch
+# https://github.com/xinntao/BasicSR
+# --------------------------------------------
+'''
+
+
+IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
+
+
+def is_image_file(filename):
+ return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
+
+
+def get_timestamp():
+ return datetime.now().strftime('%y%m%d-%H%M%S')
+
+
+def imshow(x, title=None, cbar=False, figsize=None):
+ plt.figure(figsize=figsize)
+ plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
+ if title:
+ plt.title(title)
+ if cbar:
+ plt.colorbar()
+ plt.show()
+
+
+def surf(Z, cmap='rainbow', figsize=None):
+ plt.figure(figsize=figsize)
+ ax3 = plt.axes(projection='3d')
+
+ w, h = Z.shape[:2]
+ xx = np.arange(0,w,1)
+ yy = np.arange(0,h,1)
+ X, Y = np.meshgrid(xx, yy)
+ ax3.plot_surface(X,Y,Z,cmap=cmap)
+ #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
+ plt.show()
+
+
+'''
+# --------------------------------------------
+# get image pathes
+# --------------------------------------------
+'''
+
+
+def get_image_paths(dataroot):
+ paths = None # return None if dataroot is None
+ if dataroot is not None:
+ paths = sorted(_get_paths_from_images(dataroot))
+ return paths
+
+
+def _get_paths_from_images(path):
+ assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
+ images = []
+ for dirpath, _, fnames in sorted(os.walk(path)):
+ for fname in sorted(fnames):
+ if is_image_file(fname):
+ img_path = os.path.join(dirpath, fname)
+ images.append(img_path)
+ assert images, '{:s} has no valid image file'.format(path)
+ return images
+
+
+'''
+# --------------------------------------------
+# split large images into small images
+# --------------------------------------------
+'''
+
+
+def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
+ w, h = img.shape[:2]
+ patches = []
+ if w > p_max and h > p_max:
+ w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
+ h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
+ w1.append(w-p_size)
+ h1.append(h-p_size)
+# print(w1)
+# print(h1)
+ for i in w1:
+ for j in h1:
+ patches.append(img[i:i+p_size, j:j+p_size,:])
+ else:
+ patches.append(img)
+
+ return patches
+
+
+def imssave(imgs, img_path):
+ """
+ imgs: list, N images of size WxHxC
+ """
+ img_name, ext = os.path.splitext(os.path.basename(img_path))
+
+ for i, img in enumerate(imgs):
+ if img.ndim == 3:
+ img = img[:, :, [2, 1, 0]]
+ new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
+ cv2.imwrite(new_path, img)
+
+
+def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
+ """
+ split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
+ and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
+ will be splitted.
+ Args:
+ original_dataroot:
+ taget_dataroot:
+ p_size: size of small images
+ p_overlap: patch size in training is a good choice
+ p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
+ """
+ paths = get_image_paths(original_dataroot)
+ for img_path in paths:
+ # img_name, ext = os.path.splitext(os.path.basename(img_path))
+ img = imread_uint(img_path, n_channels=n_channels)
+ patches = patches_from_image(img, p_size, p_overlap, p_max)
+ imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
+ #if original_dataroot == taget_dataroot:
+ #del img_path
+
+'''
+# --------------------------------------------
+# makedir
+# --------------------------------------------
+'''
+
+
+def mkdir(path):
+ if not os.path.exists(path):
+ os.makedirs(path)
+
+
+def mkdirs(paths):
+ if isinstance(paths, str):
+ mkdir(paths)
+ else:
+ for path in paths:
+ mkdir(path)
+
+
+def mkdir_and_rename(path):
+ if os.path.exists(path):
+ new_name = path + '_archived_' + get_timestamp()
+ print('Path already exists. Rename it to [{:s}]'.format(new_name))
+ os.rename(path, new_name)
+ os.makedirs(path)
+
+
+'''
+# --------------------------------------------
+# read image from path
+# opencv is fast, but read BGR numpy image
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# get uint8 image of size HxWxn_channles (RGB)
+# --------------------------------------------
+def imread_uint(path, n_channels=3):
+ # input: path
+ # output: HxWx3(RGB or GGG), or HxWx1 (G)
+ if n_channels == 1:
+ img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
+ img = np.expand_dims(img, axis=2) # HxWx1
+ elif n_channels == 3:
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
+ if img.ndim == 2:
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
+ else:
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
+ return img
+
+
+# --------------------------------------------
+# matlab's imwrite
+# --------------------------------------------
+def imsave(img, img_path):
+ img = np.squeeze(img)
+ if img.ndim == 3:
+ img = img[:, :, [2, 1, 0]]
+ cv2.imwrite(img_path, img)
+
+def imwrite(img, img_path):
+ img = np.squeeze(img)
+ if img.ndim == 3:
+ img = img[:, :, [2, 1, 0]]
+ cv2.imwrite(img_path, img)
+
+
+
+# --------------------------------------------
+# get single image of size HxWxn_channles (BGR)
+# --------------------------------------------
+def read_img(path):
+ # read image by cv2
+ # return: Numpy float32, HWC, BGR, [0,1]
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
+ img = img.astype(np.float32) / 255.
+ if img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ # some images have 4 channels
+ if img.shape[2] > 3:
+ img = img[:, :, :3]
+ return img
+
+
+'''
+# --------------------------------------------
+# image format conversion
+# --------------------------------------------
+# numpy(single) <---> numpy(unit)
+# numpy(single) <---> tensor
+# numpy(unit) <---> tensor
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# numpy(single) [0, 1] <---> numpy(unit)
+# --------------------------------------------
+
+
+def uint2single(img):
+
+ return np.float32(img/255.)
+
+
+def single2uint(img):
+
+ return np.uint8((img.clip(0, 1)*255.).round())
+
+
+def uint162single(img):
+
+ return np.float32(img/65535.)
+
+
+def single2uint16(img):
+
+ return np.uint16((img.clip(0, 1)*65535.).round())
+
+
+# --------------------------------------------
+# numpy(unit) (HxWxC or HxW) <---> tensor
+# --------------------------------------------
+
+
+# convert uint to 4-dimensional torch tensor
+def uint2tensor4(img):
+ if img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
+
+
+# convert uint to 3-dimensional torch tensor
+def uint2tensor3(img):
+ if img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
+
+
+# convert 2/3/4-dimensional torch tensor to uint
+def tensor2uint(img):
+ img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
+ if img.ndim == 3:
+ img = np.transpose(img, (1, 2, 0))
+ return np.uint8((img*255.0).round())
+
+
+# --------------------------------------------
+# numpy(single) (HxWxC) <---> tensor
+# --------------------------------------------
+
+
+# convert single (HxWxC) to 3-dimensional torch tensor
+def single2tensor3(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
+
+
+# convert single (HxWxC) to 4-dimensional torch tensor
+def single2tensor4(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
+
+
+# convert torch tensor to single
+def tensor2single(img):
+ img = img.data.squeeze().float().cpu().numpy()
+ if img.ndim == 3:
+ img = np.transpose(img, (1, 2, 0))
+
+ return img
+
+# convert torch tensor to single
+def tensor2single3(img):
+ img = img.data.squeeze().float().cpu().numpy()
+ if img.ndim == 3:
+ img = np.transpose(img, (1, 2, 0))
+ elif img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ return img
+
+
+def single2tensor5(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
+
+
+def single32tensor5(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
+
+
+def single42tensor4(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
+
+
+# from skimage.io import imread, imsave
+def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
+ '''
+ Converts a torch Tensor into an image Numpy array of BGR channel order
+ Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
+ Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
+ '''
+ tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
+ tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
+ n_dim = tensor.dim()
+ if n_dim == 4:
+ n_img = len(tensor)
+ img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
+ img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
+ elif n_dim == 3:
+ img_np = tensor.numpy()
+ img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
+ elif n_dim == 2:
+ img_np = tensor.numpy()
+ else:
+ raise TypeError(
+ 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
+ if out_type == np.uint8:
+ img_np = (img_np * 255.0).round()
+ # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
+ return img_np.astype(out_type)
+
+
+'''
+# --------------------------------------------
+# Augmentation, flipe and/or rotate
+# --------------------------------------------
+# The following two are enough.
+# (1) augmet_img: numpy image of WxHxC or WxH
+# (2) augment_img_tensor4: tensor image 1xCxWxH
+# --------------------------------------------
+'''
+
+
+def augment_img(img, mode=0):
+ '''Kai Zhang (github: https://github.com/cszn)
+ '''
+ if mode == 0:
+ return img
+ elif mode == 1:
+ return np.flipud(np.rot90(img))
+ elif mode == 2:
+ return np.flipud(img)
+ elif mode == 3:
+ return np.rot90(img, k=3)
+ elif mode == 4:
+ return np.flipud(np.rot90(img, k=2))
+ elif mode == 5:
+ return np.rot90(img)
+ elif mode == 6:
+ return np.rot90(img, k=2)
+ elif mode == 7:
+ return np.flipud(np.rot90(img, k=3))
+
+
+def augment_img_tensor4(img, mode=0):
+ '''Kai Zhang (github: https://github.com/cszn)
+ '''
+ if mode == 0:
+ return img
+ elif mode == 1:
+ return img.rot90(1, [2, 3]).flip([2])
+ elif mode == 2:
+ return img.flip([2])
+ elif mode == 3:
+ return img.rot90(3, [2, 3])
+ elif mode == 4:
+ return img.rot90(2, [2, 3]).flip([2])
+ elif mode == 5:
+ return img.rot90(1, [2, 3])
+ elif mode == 6:
+ return img.rot90(2, [2, 3])
+ elif mode == 7:
+ return img.rot90(3, [2, 3]).flip([2])
+
+
+def augment_img_tensor(img, mode=0):
+ '''Kai Zhang (github: https://github.com/cszn)
+ '''
+ img_size = img.size()
+ img_np = img.data.cpu().numpy()
+ if len(img_size) == 3:
+ img_np = np.transpose(img_np, (1, 2, 0))
+ elif len(img_size) == 4:
+ img_np = np.transpose(img_np, (2, 3, 1, 0))
+ img_np = augment_img(img_np, mode=mode)
+ img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
+ if len(img_size) == 3:
+ img_tensor = img_tensor.permute(2, 0, 1)
+ elif len(img_size) == 4:
+ img_tensor = img_tensor.permute(3, 2, 0, 1)
+
+ return img_tensor.type_as(img)
+
+
+def augment_img_np3(img, mode=0):
+ if mode == 0:
+ return img
+ elif mode == 1:
+ return img.transpose(1, 0, 2)
+ elif mode == 2:
+ return img[::-1, :, :]
+ elif mode == 3:
+ img = img[::-1, :, :]
+ img = img.transpose(1, 0, 2)
+ return img
+ elif mode == 4:
+ return img[:, ::-1, :]
+ elif mode == 5:
+ img = img[:, ::-1, :]
+ img = img.transpose(1, 0, 2)
+ return img
+ elif mode == 6:
+ img = img[:, ::-1, :]
+ img = img[::-1, :, :]
+ return img
+ elif mode == 7:
+ img = img[:, ::-1, :]
+ img = img[::-1, :, :]
+ img = img.transpose(1, 0, 2)
+ return img
+
+
+def augment_imgs(img_list, hflip=True, rot=True):
+ # horizontal flip OR rotate
+ hflip = hflip and random.random() < 0.5
+ vflip = rot and random.random() < 0.5
+ rot90 = rot and random.random() < 0.5
+
+ def _augment(img):
+ if hflip:
+ img = img[:, ::-1, :]
+ if vflip:
+ img = img[::-1, :, :]
+ if rot90:
+ img = img.transpose(1, 0, 2)
+ return img
+
+ return [_augment(img) for img in img_list]
+
+
+'''
+# --------------------------------------------
+# modcrop and shave
+# --------------------------------------------
+'''
+
+
+def modcrop(img_in, scale):
+ # img_in: Numpy, HWC or HW
+ img = np.copy(img_in)
+ if img.ndim == 2:
+ H, W = img.shape
+ H_r, W_r = H % scale, W % scale
+ img = img[:H - H_r, :W - W_r]
+ elif img.ndim == 3:
+ H, W, C = img.shape
+ H_r, W_r = H % scale, W % scale
+ img = img[:H - H_r, :W - W_r, :]
+ else:
+ raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
+ return img
+
+
+def shave(img_in, border=0):
+ # img_in: Numpy, HWC or HW
+ img = np.copy(img_in)
+ h, w = img.shape[:2]
+ img = img[border:h-border, border:w-border]
+ return img
+
+
+'''
+# --------------------------------------------
+# image processing process on numpy image
+# channel_convert(in_c, tar_type, img_list):
+# rgb2ycbcr(img, only_y=True):
+# bgr2ycbcr(img, only_y=True):
+# ycbcr2rgb(img):
+# --------------------------------------------
+'''
+
+
+def rgb2ycbcr(img, only_y=True):
+ '''same as matlab rgb2ycbcr
+ only_y: only return Y channel
+ Input:
+ uint8, [0, 255]
+ float, [0, 1]
+ '''
+ in_img_type = img.dtype
+ img.astype(np.float32)
+ if in_img_type != np.uint8:
+ img *= 255.
+ # convert
+ if only_y:
+ rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
+ else:
+ rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
+ [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
+ if in_img_type == np.uint8:
+ rlt = rlt.round()
+ else:
+ rlt /= 255.
+ return rlt.astype(in_img_type)
+
+
+def ycbcr2rgb(img):
+ '''same as matlab ycbcr2rgb
+ Input:
+ uint8, [0, 255]
+ float, [0, 1]
+ '''
+ in_img_type = img.dtype
+ img.astype(np.float32)
+ if in_img_type != np.uint8:
+ img *= 255.
+ # convert
+ rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
+ [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
+ if in_img_type == np.uint8:
+ rlt = rlt.round()
+ else:
+ rlt /= 255.
+ return rlt.astype(in_img_type)
+
+
+def bgr2ycbcr(img, only_y=True):
+ '''bgr version of rgb2ycbcr
+ only_y: only return Y channel
+ Input:
+ uint8, [0, 255]
+ float, [0, 1]
+ '''
+ in_img_type = img.dtype
+ img.astype(np.float32)
+ if in_img_type != np.uint8:
+ img *= 255.
+ # convert
+ if only_y:
+ rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
+ else:
+ rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
+ [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
+ if in_img_type == np.uint8:
+ rlt = rlt.round()
+ else:
+ rlt /= 255.
+ return rlt.astype(in_img_type)
+
+
+def channel_convert(in_c, tar_type, img_list):
+ # conversion among BGR, gray and y
+ if in_c == 3 and tar_type == 'gray': # BGR to gray
+ gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
+ return [np.expand_dims(img, axis=2) for img in gray_list]
+ elif in_c == 3 and tar_type == 'y': # BGR to y
+ y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
+ return [np.expand_dims(img, axis=2) for img in y_list]
+ elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
+ return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
+ else:
+ return img_list
+
+
+'''
+# --------------------------------------------
+# metric, PSNR and SSIM
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# PSNR
+# --------------------------------------------
+def calculate_psnr(img1, img2, border=0):
+ # img1 and img2 have range [0, 255]
+ #img1 = img1.squeeze()
+ #img2 = img2.squeeze()
+ if not img1.shape == img2.shape:
+ raise ValueError('Input images must have the same dimensions.')
+ h, w = img1.shape[:2]
+ img1 = img1[border:h-border, border:w-border]
+ img2 = img2[border:h-border, border:w-border]
+
+ img1 = img1.astype(np.float64)
+ img2 = img2.astype(np.float64)
+ mse = np.mean((img1 - img2)**2)
+ if mse == 0:
+ return float('inf')
+ return 20 * math.log10(255.0 / math.sqrt(mse))
+
+
+# --------------------------------------------
+# SSIM
+# --------------------------------------------
+def calculate_ssim(img1, img2, border=0):
+ '''calculate SSIM
+ the same outputs as MATLAB's
+ img1, img2: [0, 255]
+ '''
+ #img1 = img1.squeeze()
+ #img2 = img2.squeeze()
+ if not img1.shape == img2.shape:
+ raise ValueError('Input images must have the same dimensions.')
+ h, w = img1.shape[:2]
+ img1 = img1[border:h-border, border:w-border]
+ img2 = img2[border:h-border, border:w-border]
+
+ if img1.ndim == 2:
+ return ssim(img1, img2)
+ elif img1.ndim == 3:
+ if img1.shape[2] == 3:
+ ssims = []
+ for i in range(3):
+ ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
+ return np.array(ssims).mean()
+ elif img1.shape[2] == 1:
+ return ssim(np.squeeze(img1), np.squeeze(img2))
+ else:
+ raise ValueError('Wrong input image dimensions.')
+
+
+def ssim(img1, img2):
+ C1 = (0.01 * 255)**2
+ C2 = (0.03 * 255)**2
+
+ img1 = img1.astype(np.float64)
+ img2 = img2.astype(np.float64)
+ kernel = cv2.getGaussianKernel(11, 1.5)
+ window = np.outer(kernel, kernel.transpose())
+
+ mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
+ mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
+ mu1_sq = mu1**2
+ mu2_sq = mu2**2
+ mu1_mu2 = mu1 * mu2
+ sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
+ sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
+ sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
+
+ ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
+ (sigma1_sq + sigma2_sq + C2))
+ return ssim_map.mean()
+
+
+'''
+# --------------------------------------------
+# matlab's bicubic imresize (numpy and torch) [0, 1]
+# --------------------------------------------
+'''
+
+
+# matlab 'imresize' function, now only support 'bicubic'
+def cubic(x):
+ absx = torch.abs(x)
+ absx2 = absx**2
+ absx3 = absx**3
+ return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
+ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
+
+
+def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
+ if (scale < 1) and (antialiasing):
+ # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
+ kernel_width = kernel_width / scale
+
+ # Output-space coordinates
+ x = torch.linspace(1, out_length, out_length)
+
+ # Input-space coordinates. Calculate the inverse mapping such that 0.5
+ # in output space maps to 0.5 in input space, and 0.5+scale in output
+ # space maps to 1.5 in input space.
+ u = x / scale + 0.5 * (1 - 1 / scale)
+
+ # What is the left-most pixel that can be involved in the computation?
+ left = torch.floor(u - kernel_width / 2)
+
+ # What is the maximum number of pixels that can be involved in the
+ # computation? Note: it's OK to use an extra pixel here; if the
+ # corresponding weights are all zero, it will be eliminated at the end
+ # of this function.
+ P = math.ceil(kernel_width) + 2
+
+ # The indices of the input pixels involved in computing the k-th output
+ # pixel are in row k of the indices matrix.
+ indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
+ 1, P).expand(out_length, P)
+
+ # The weights used to compute the k-th output pixel are in row k of the
+ # weights matrix.
+ distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
+ # apply cubic kernel
+ if (scale < 1) and (antialiasing):
+ weights = scale * cubic(distance_to_center * scale)
+ else:
+ weights = cubic(distance_to_center)
+ # Normalize the weights matrix so that each row sums to 1.
+ weights_sum = torch.sum(weights, 1).view(out_length, 1)
+ weights = weights / weights_sum.expand(out_length, P)
+
+ # If a column in weights is all zero, get rid of it. only consider the first and last column.
+ weights_zero_tmp = torch.sum((weights == 0), 0)
+ if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
+ indices = indices.narrow(1, 1, P - 2)
+ weights = weights.narrow(1, 1, P - 2)
+ if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
+ indices = indices.narrow(1, 0, P - 2)
+ weights = weights.narrow(1, 0, P - 2)
+ weights = weights.contiguous()
+ indices = indices.contiguous()
+ sym_len_s = -indices.min() + 1
+ sym_len_e = indices.max() - in_length
+ indices = indices + sym_len_s - 1
+ return weights, indices, int(sym_len_s), int(sym_len_e)
+
+
+# --------------------------------------------
+# imresize for tensor image [0, 1]
+# --------------------------------------------
+def imresize(img, scale, antialiasing=True):
+ # Now the scale should be the same for H and W
+ # input: img: pytorch tensor, CHW or HW [0,1]
+ # output: CHW or HW [0,1] w/o round
+ need_squeeze = True if img.dim() == 2 else False
+ if need_squeeze:
+ img.unsqueeze_(0)
+ in_C, in_H, in_W = img.size()
+ out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
+ kernel_width = 4
+ kernel = 'cubic'
+
+ # Return the desired dimension order for performing the resize. The
+ # strategy is to perform the resize first along the dimension with the
+ # smallest scale factor.
+ # Now we do not support this.
+
+ # get weights and indices
+ weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
+ in_H, out_H, scale, kernel, kernel_width, antialiasing)
+ weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
+ in_W, out_W, scale, kernel, kernel_width, antialiasing)
+ # process H dimension
+ # symmetric copying
+ img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
+ img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
+
+ sym_patch = img[:, :sym_len_Hs, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
+
+ sym_patch = img[:, -sym_len_He:, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
+
+ out_1 = torch.FloatTensor(in_C, out_H, in_W)
+ kernel_width = weights_H.size(1)
+ for i in range(out_H):
+ idx = int(indices_H[i][0])
+ for j in range(out_C):
+ out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
+
+ # process W dimension
+ # symmetric copying
+ out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
+ out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
+
+ sym_patch = out_1[:, :, :sym_len_Ws]
+ inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(2, inv_idx)
+ out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
+
+ sym_patch = out_1[:, :, -sym_len_We:]
+ inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(2, inv_idx)
+ out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
+
+ out_2 = torch.FloatTensor(in_C, out_H, out_W)
+ kernel_width = weights_W.size(1)
+ for i in range(out_W):
+ idx = int(indices_W[i][0])
+ for j in range(out_C):
+ out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
+ if need_squeeze:
+ out_2.squeeze_()
+ return out_2
+
+
+# --------------------------------------------
+# imresize for numpy image [0, 1]
+# --------------------------------------------
+def imresize_np(img, scale, antialiasing=True):
+ # Now the scale should be the same for H and W
+ # input: img: Numpy, HWC or HW [0,1]
+ # output: HWC or HW [0,1] w/o round
+ img = torch.from_numpy(img)
+ need_squeeze = True if img.dim() == 2 else False
+ if need_squeeze:
+ img.unsqueeze_(2)
+
+ in_H, in_W, in_C = img.size()
+ out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
+ kernel_width = 4
+ kernel = 'cubic'
+
+ # Return the desired dimension order for performing the resize. The
+ # strategy is to perform the resize first along the dimension with the
+ # smallest scale factor.
+ # Now we do not support this.
+
+ # get weights and indices
+ weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
+ in_H, out_H, scale, kernel, kernel_width, antialiasing)
+ weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
+ in_W, out_W, scale, kernel, kernel_width, antialiasing)
+ # process H dimension
+ # symmetric copying
+ img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
+ img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
+
+ sym_patch = img[:sym_len_Hs, :, :]
+ inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(0, inv_idx)
+ img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
+
+ sym_patch = img[-sym_len_He:, :, :]
+ inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(0, inv_idx)
+ img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
+
+ out_1 = torch.FloatTensor(out_H, in_W, in_C)
+ kernel_width = weights_H.size(1)
+ for i in range(out_H):
+ idx = int(indices_H[i][0])
+ for j in range(out_C):
+ out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
+
+ # process W dimension
+ # symmetric copying
+ out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
+ out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
+
+ sym_patch = out_1[:, :sym_len_Ws, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
+
+ sym_patch = out_1[:, -sym_len_We:, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
+
+ out_2 = torch.FloatTensor(out_H, out_W, in_C)
+ kernel_width = weights_W.size(1)
+ for i in range(out_W):
+ idx = int(indices_W[i][0])
+ for j in range(out_C):
+ out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
+ if need_squeeze:
+ out_2.squeeze_()
+
+ return out_2.numpy()
+
+
+if __name__ == '__main__':
+ print('---')
+# img = imread_uint('test.bmp', 3)
+# img = uint2single(img)
+# img_bicubic = imresize_np(img, 1/4)
\ No newline at end of file
diff --git a/ldm/modules/midas/__init__.py b/ldm/modules/midas/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/ldm/modules/midas/api.py b/ldm/modules/midas/api.py
new file mode 100644
index 0000000000000000000000000000000000000000..b58ebbffd942a2fc22264f0ab47e400c26b9f41c
--- /dev/null
+++ b/ldm/modules/midas/api.py
@@ -0,0 +1,170 @@
+# based on https://github.com/isl-org/MiDaS
+
+import cv2
+import torch
+import torch.nn as nn
+from torchvision.transforms import Compose
+
+from ldm.modules.midas.midas.dpt_depth import DPTDepthModel
+from ldm.modules.midas.midas.midas_net import MidasNet
+from ldm.modules.midas.midas.midas_net_custom import MidasNet_small
+from ldm.modules.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet
+
+
+ISL_PATHS = {
+ "dpt_large": "midas_models/dpt_large-midas-2f21e586.pt",
+ "dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt",
+ "midas_v21": "",
+ "midas_v21_small": "",
+}
+
+
+def disabled_train(self, mode=True):
+ """Overwrite model.train with this function to make sure train/eval mode
+ does not change anymore."""
+ return self
+
+
+def load_midas_transform(model_type):
+ # https://github.com/isl-org/MiDaS/blob/master/run.py
+ # load transform only
+ if model_type == "dpt_large": # DPT-Large
+ net_w, net_h = 384, 384
+ resize_mode = "minimal"
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
+
+ elif model_type == "dpt_hybrid": # DPT-Hybrid
+ net_w, net_h = 384, 384
+ resize_mode = "minimal"
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
+
+ elif model_type == "midas_v21":
+ net_w, net_h = 384, 384
+ resize_mode = "upper_bound"
+ normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
+
+ elif model_type == "midas_v21_small":
+ net_w, net_h = 256, 256
+ resize_mode = "upper_bound"
+ normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
+
+ else:
+ assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
+
+ transform = Compose(
+ [
+ Resize(
+ net_w,
+ net_h,
+ resize_target=None,
+ keep_aspect_ratio=True,
+ ensure_multiple_of=32,
+ resize_method=resize_mode,
+ image_interpolation_method=cv2.INTER_CUBIC,
+ ),
+ normalization,
+ PrepareForNet(),
+ ]
+ )
+
+ return transform
+
+
+def load_model(model_type):
+ # https://github.com/isl-org/MiDaS/blob/master/run.py
+ # load network
+ model_path = ISL_PATHS[model_type]
+ if model_type == "dpt_large": # DPT-Large
+ model = DPTDepthModel(
+ path=model_path,
+ backbone="vitl16_384",
+ non_negative=True,
+ )
+ net_w, net_h = 384, 384
+ resize_mode = "minimal"
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
+
+ elif model_type == "dpt_hybrid": # DPT-Hybrid
+ model = DPTDepthModel(
+ path=model_path,
+ backbone="vitb_rn50_384",
+ non_negative=True,
+ )
+ net_w, net_h = 384, 384
+ resize_mode = "minimal"
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
+
+ elif model_type == "midas_v21":
+ model = MidasNet(model_path, non_negative=True)
+ net_w, net_h = 384, 384
+ resize_mode = "upper_bound"
+ normalization = NormalizeImage(
+ mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
+ )
+
+ elif model_type == "midas_v21_small":
+ model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
+ non_negative=True, blocks={'expand': True})
+ net_w, net_h = 256, 256
+ resize_mode = "upper_bound"
+ normalization = NormalizeImage(
+ mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
+ )
+
+ else:
+ print(f"model_type '{model_type}' not implemented, use: --model_type large")
+ assert False
+
+ transform = Compose(
+ [
+ Resize(
+ net_w,
+ net_h,
+ resize_target=None,
+ keep_aspect_ratio=True,
+ ensure_multiple_of=32,
+ resize_method=resize_mode,
+ image_interpolation_method=cv2.INTER_CUBIC,
+ ),
+ normalization,
+ PrepareForNet(),
+ ]
+ )
+
+ return model.eval(), transform
+
+
+class MiDaSInference(nn.Module):
+ MODEL_TYPES_TORCH_HUB = [
+ "DPT_Large",
+ "DPT_Hybrid",
+ "MiDaS_small"
+ ]
+ MODEL_TYPES_ISL = [
+ "dpt_large",
+ "dpt_hybrid",
+ "midas_v21",
+ "midas_v21_small",
+ ]
+
+ def __init__(self, model_type):
+ super().__init__()
+ assert (model_type in self.MODEL_TYPES_ISL)
+ model, _ = load_model(model_type)
+ self.model = model
+ self.model.train = disabled_train
+
+ def forward(self, x):
+ # x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array
+ # NOTE: we expect that the correct transform has been called during dataloading.
+ with torch.no_grad():
+ prediction = self.model(x)
+ prediction = torch.nn.functional.interpolate(
+ prediction.unsqueeze(1),
+ size=x.shape[2:],
+ mode="bicubic",
+ align_corners=False,
+ )
+ assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3])
+ return prediction
+
diff --git a/ldm/modules/midas/midas/__init__.py b/ldm/modules/midas/midas/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/ldm/modules/midas/midas/base_model.py b/ldm/modules/midas/midas/base_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..5cf430239b47ec5ec07531263f26f5c24a2311cd
--- /dev/null
+++ b/ldm/modules/midas/midas/base_model.py
@@ -0,0 +1,16 @@
+import torch
+
+
+class BaseModel(torch.nn.Module):
+ def load(self, path):
+ """Load model from file.
+
+ Args:
+ path (str): file path
+ """
+ parameters = torch.load(path, map_location=torch.device('cpu'))
+
+ if "optimizer" in parameters:
+ parameters = parameters["model"]
+
+ self.load_state_dict(parameters)
diff --git a/ldm/modules/midas/midas/blocks.py b/ldm/modules/midas/midas/blocks.py
new file mode 100644
index 0000000000000000000000000000000000000000..2145d18fa98060a618536d9a64fe6589e9be4f78
--- /dev/null
+++ b/ldm/modules/midas/midas/blocks.py
@@ -0,0 +1,342 @@
+import torch
+import torch.nn as nn
+
+from .vit import (
+ _make_pretrained_vitb_rn50_384,
+ _make_pretrained_vitl16_384,
+ _make_pretrained_vitb16_384,
+ forward_vit,
+)
+
+def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
+ if backbone == "vitl16_384":
+ pretrained = _make_pretrained_vitl16_384(
+ use_pretrained, hooks=hooks, use_readout=use_readout
+ )
+ scratch = _make_scratch(
+ [256, 512, 1024, 1024], features, groups=groups, expand=expand
+ ) # ViT-L/16 - 85.0% Top1 (backbone)
+ elif backbone == "vitb_rn50_384":
+ pretrained = _make_pretrained_vitb_rn50_384(
+ use_pretrained,
+ hooks=hooks,
+ use_vit_only=use_vit_only,
+ use_readout=use_readout,
+ )
+ scratch = _make_scratch(
+ [256, 512, 768, 768], features, groups=groups, expand=expand
+ ) # ViT-H/16 - 85.0% Top1 (backbone)
+ elif backbone == "vitb16_384":
+ pretrained = _make_pretrained_vitb16_384(
+ use_pretrained, hooks=hooks, use_readout=use_readout
+ )
+ scratch = _make_scratch(
+ [96, 192, 384, 768], features, groups=groups, expand=expand
+ ) # ViT-B/16 - 84.6% Top1 (backbone)
+ elif backbone == "resnext101_wsl":
+ pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
+ scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
+ elif backbone == "efficientnet_lite3":
+ pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
+ scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
+ else:
+ print(f"Backbone '{backbone}' not implemented")
+ assert False
+
+ return pretrained, scratch
+
+
+def _make_scratch(in_shape, out_shape, groups=1, expand=False):
+ scratch = nn.Module()
+
+ out_shape1 = out_shape
+ out_shape2 = out_shape
+ out_shape3 = out_shape
+ out_shape4 = out_shape
+ if expand==True:
+ out_shape1 = out_shape
+ out_shape2 = out_shape*2
+ out_shape3 = out_shape*4
+ out_shape4 = out_shape*8
+
+ scratch.layer1_rn = nn.Conv2d(
+ in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
+ )
+ scratch.layer2_rn = nn.Conv2d(
+ in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
+ )
+ scratch.layer3_rn = nn.Conv2d(
+ in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
+ )
+ scratch.layer4_rn = nn.Conv2d(
+ in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
+ )
+
+ return scratch
+
+
+def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
+ efficientnet = torch.hub.load(
+ "rwightman/gen-efficientnet-pytorch",
+ "tf_efficientnet_lite3",
+ pretrained=use_pretrained,
+ exportable=exportable
+ )
+ return _make_efficientnet_backbone(efficientnet)
+
+
+def _make_efficientnet_backbone(effnet):
+ pretrained = nn.Module()
+
+ pretrained.layer1 = nn.Sequential(
+ effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
+ )
+ pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
+ pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
+ pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
+
+ return pretrained
+
+
+def _make_resnet_backbone(resnet):
+ pretrained = nn.Module()
+ pretrained.layer1 = nn.Sequential(
+ resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
+ )
+
+ pretrained.layer2 = resnet.layer2
+ pretrained.layer3 = resnet.layer3
+ pretrained.layer4 = resnet.layer4
+
+ return pretrained
+
+
+def _make_pretrained_resnext101_wsl(use_pretrained):
+ resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
+ return _make_resnet_backbone(resnet)
+
+
+
+class Interpolate(nn.Module):
+ """Interpolation module.
+ """
+
+ def __init__(self, scale_factor, mode, align_corners=False):
+ """Init.
+
+ Args:
+ scale_factor (float): scaling
+ mode (str): interpolation mode
+ """
+ super(Interpolate, self).__init__()
+
+ self.interp = nn.functional.interpolate
+ self.scale_factor = scale_factor
+ self.mode = mode
+ self.align_corners = align_corners
+
+ def forward(self, x):
+ """Forward pass.
+
+ Args:
+ x (tensor): input
+
+ Returns:
+ tensor: interpolated data
+ """
+
+ x = self.interp(
+ x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
+ )
+
+ return x
+
+
+class ResidualConvUnit(nn.Module):
+ """Residual convolution module.
+ """
+
+ def __init__(self, features):
+ """Init.
+
+ Args:
+ features (int): number of features
+ """
+ super().__init__()
+
+ self.conv1 = nn.Conv2d(
+ features, features, kernel_size=3, stride=1, padding=1, bias=True
+ )
+
+ self.conv2 = nn.Conv2d(
+ features, features, kernel_size=3, stride=1, padding=1, bias=True
+ )
+
+ self.relu = nn.ReLU(inplace=True)
+
+ def forward(self, x):
+ """Forward pass.
+
+ Args:
+ x (tensor): input
+
+ Returns:
+ tensor: output
+ """
+ out = self.relu(x)
+ out = self.conv1(out)
+ out = self.relu(out)
+ out = self.conv2(out)
+
+ return out + x
+
+
+class FeatureFusionBlock(nn.Module):
+ """Feature fusion block.
+ """
+
+ def __init__(self, features):
+ """Init.
+
+ Args:
+ features (int): number of features
+ """
+ super(FeatureFusionBlock, self).__init__()
+
+ self.resConfUnit1 = ResidualConvUnit(features)
+ self.resConfUnit2 = ResidualConvUnit(features)
+
+ def forward(self, *xs):
+ """Forward pass.
+
+ Returns:
+ tensor: output
+ """
+ output = xs[0]
+
+ if len(xs) == 2:
+ output += self.resConfUnit1(xs[1])
+
+ output = self.resConfUnit2(output)
+
+ output = nn.functional.interpolate(
+ output, scale_factor=2, mode="bilinear", align_corners=True
+ )
+
+ return output
+
+
+
+
+class ResidualConvUnit_custom(nn.Module):
+ """Residual convolution module.
+ """
+
+ def __init__(self, features, activation, bn):
+ """Init.
+
+ Args:
+ features (int): number of features
+ """
+ super().__init__()
+
+ self.bn = bn
+
+ self.groups=1
+
+ self.conv1 = nn.Conv2d(
+ features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
+ )
+
+ self.conv2 = nn.Conv2d(
+ features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
+ )
+
+ if self.bn==True:
+ self.bn1 = nn.BatchNorm2d(features)
+ self.bn2 = nn.BatchNorm2d(features)
+
+ self.activation = activation
+
+ self.skip_add = nn.quantized.FloatFunctional()
+
+ def forward(self, x):
+ """Forward pass.
+
+ Args:
+ x (tensor): input
+
+ Returns:
+ tensor: output
+ """
+
+ out = self.activation(x)
+ out = self.conv1(out)
+ if self.bn==True:
+ out = self.bn1(out)
+
+ out = self.activation(out)
+ out = self.conv2(out)
+ if self.bn==True:
+ out = self.bn2(out)
+
+ if self.groups > 1:
+ out = self.conv_merge(out)
+
+ return self.skip_add.add(out, x)
+
+ # return out + x
+
+
+class FeatureFusionBlock_custom(nn.Module):
+ """Feature fusion block.
+ """
+
+ def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
+ """Init.
+
+ Args:
+ features (int): number of features
+ """
+ super(FeatureFusionBlock_custom, self).__init__()
+
+ self.deconv = deconv
+ self.align_corners = align_corners
+
+ self.groups=1
+
+ self.expand = expand
+ out_features = features
+ if self.expand==True:
+ out_features = features//2
+
+ self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
+
+ self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
+ self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
+
+ self.skip_add = nn.quantized.FloatFunctional()
+
+ def forward(self, *xs):
+ """Forward pass.
+
+ Returns:
+ tensor: output
+ """
+ output = xs[0]
+
+ if len(xs) == 2:
+ res = self.resConfUnit1(xs[1])
+ output = self.skip_add.add(output, res)
+ # output += res
+
+ output = self.resConfUnit2(output)
+
+ output = nn.functional.interpolate(
+ output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
+ )
+
+ output = self.out_conv(output)
+
+ return output
+
diff --git a/ldm/modules/midas/midas/dpt_depth.py b/ldm/modules/midas/midas/dpt_depth.py
new file mode 100644
index 0000000000000000000000000000000000000000..4e9aab5d2767dffea39da5b3f30e2798688216f1
--- /dev/null
+++ b/ldm/modules/midas/midas/dpt_depth.py
@@ -0,0 +1,109 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from .base_model import BaseModel
+from .blocks import (
+ FeatureFusionBlock,
+ FeatureFusionBlock_custom,
+ Interpolate,
+ _make_encoder,
+ forward_vit,
+)
+
+
+def _make_fusion_block(features, use_bn):
+ return FeatureFusionBlock_custom(
+ features,
+ nn.ReLU(False),
+ deconv=False,
+ bn=use_bn,
+ expand=False,
+ align_corners=True,
+ )
+
+
+class DPT(BaseModel):
+ def __init__(
+ self,
+ head,
+ features=256,
+ backbone="vitb_rn50_384",
+ readout="project",
+ channels_last=False,
+ use_bn=False,
+ ):
+
+ super(DPT, self).__init__()
+
+ self.channels_last = channels_last
+
+ hooks = {
+ "vitb_rn50_384": [0, 1, 8, 11],
+ "vitb16_384": [2, 5, 8, 11],
+ "vitl16_384": [5, 11, 17, 23],
+ }
+
+ # Instantiate backbone and reassemble blocks
+ self.pretrained, self.scratch = _make_encoder(
+ backbone,
+ features,
+ False, # Set to true of you want to train from scratch, uses ImageNet weights
+ groups=1,
+ expand=False,
+ exportable=False,
+ hooks=hooks[backbone],
+ use_readout=readout,
+ )
+
+ self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
+ self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
+ self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
+ self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
+
+ self.scratch.output_conv = head
+
+
+ def forward(self, x):
+ if self.channels_last == True:
+ x.contiguous(memory_format=torch.channels_last)
+
+ layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
+
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
+
+ path_4 = self.scratch.refinenet4(layer_4_rn)
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
+
+ out = self.scratch.output_conv(path_1)
+
+ return out
+
+
+class DPTDepthModel(DPT):
+ def __init__(self, path=None, non_negative=True, **kwargs):
+ features = kwargs["features"] if "features" in kwargs else 256
+
+ head = nn.Sequential(
+ nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
+ Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
+ nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
+ nn.ReLU(True),
+ nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
+ nn.ReLU(True) if non_negative else nn.Identity(),
+ nn.Identity(),
+ )
+
+ super().__init__(head, **kwargs)
+
+ if path is not None:
+ self.load(path)
+
+ def forward(self, x):
+ return super().forward(x).squeeze(dim=1)
+
diff --git a/ldm/modules/midas/midas/midas_net.py b/ldm/modules/midas/midas/midas_net.py
new file mode 100644
index 0000000000000000000000000000000000000000..8a954977800b0a0f48807e80fa63041910e33c1f
--- /dev/null
+++ b/ldm/modules/midas/midas/midas_net.py
@@ -0,0 +1,76 @@
+"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
+This file contains code that is adapted from
+https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
+"""
+import torch
+import torch.nn as nn
+
+from .base_model import BaseModel
+from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
+
+
+class MidasNet(BaseModel):
+ """Network for monocular depth estimation.
+ """
+
+ def __init__(self, path=None, features=256, non_negative=True):
+ """Init.
+
+ Args:
+ path (str, optional): Path to saved model. Defaults to None.
+ features (int, optional): Number of features. Defaults to 256.
+ backbone (str, optional): Backbone network for encoder. Defaults to resnet50
+ """
+ print("Loading weights: ", path)
+
+ super(MidasNet, self).__init__()
+
+ use_pretrained = False if path is None else True
+
+ self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
+
+ self.scratch.refinenet4 = FeatureFusionBlock(features)
+ self.scratch.refinenet3 = FeatureFusionBlock(features)
+ self.scratch.refinenet2 = FeatureFusionBlock(features)
+ self.scratch.refinenet1 = FeatureFusionBlock(features)
+
+ self.scratch.output_conv = nn.Sequential(
+ nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
+ Interpolate(scale_factor=2, mode="bilinear"),
+ nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
+ nn.ReLU(True),
+ nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
+ nn.ReLU(True) if non_negative else nn.Identity(),
+ )
+
+ if path:
+ self.load(path)
+
+ def forward(self, x):
+ """Forward pass.
+
+ Args:
+ x (tensor): input data (image)
+
+ Returns:
+ tensor: depth
+ """
+
+ layer_1 = self.pretrained.layer1(x)
+ layer_2 = self.pretrained.layer2(layer_1)
+ layer_3 = self.pretrained.layer3(layer_2)
+ layer_4 = self.pretrained.layer4(layer_3)
+
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
+
+ path_4 = self.scratch.refinenet4(layer_4_rn)
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
+
+ out = self.scratch.output_conv(path_1)
+
+ return torch.squeeze(out, dim=1)
diff --git a/ldm/modules/midas/midas/midas_net_custom.py b/ldm/modules/midas/midas/midas_net_custom.py
new file mode 100644
index 0000000000000000000000000000000000000000..50e4acb5e53d5fabefe3dde16ab49c33c2b7797c
--- /dev/null
+++ b/ldm/modules/midas/midas/midas_net_custom.py
@@ -0,0 +1,128 @@
+"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
+This file contains code that is adapted from
+https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
+"""
+import torch
+import torch.nn as nn
+
+from .base_model import BaseModel
+from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
+
+
+class MidasNet_small(BaseModel):
+ """Network for monocular depth estimation.
+ """
+
+ def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
+ blocks={'expand': True}):
+ """Init.
+
+ Args:
+ path (str, optional): Path to saved model. Defaults to None.
+ features (int, optional): Number of features. Defaults to 256.
+ backbone (str, optional): Backbone network for encoder. Defaults to resnet50
+ """
+ print("Loading weights: ", path)
+
+ super(MidasNet_small, self).__init__()
+
+ use_pretrained = False if path else True
+
+ self.channels_last = channels_last
+ self.blocks = blocks
+ self.backbone = backbone
+
+ self.groups = 1
+
+ features1=features
+ features2=features
+ features3=features
+ features4=features
+ self.expand = False
+ if "expand" in self.blocks and self.blocks['expand'] == True:
+ self.expand = True
+ features1=features
+ features2=features*2
+ features3=features*4
+ features4=features*8
+
+ self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
+
+ self.scratch.activation = nn.ReLU(False)
+
+ self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
+ self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
+ self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
+ self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
+
+
+ self.scratch.output_conv = nn.Sequential(
+ nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
+ Interpolate(scale_factor=2, mode="bilinear"),
+ nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
+ self.scratch.activation,
+ nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
+ nn.ReLU(True) if non_negative else nn.Identity(),
+ nn.Identity(),
+ )
+
+ if path:
+ self.load(path)
+
+
+ def forward(self, x):
+ """Forward pass.
+
+ Args:
+ x (tensor): input data (image)
+
+ Returns:
+ tensor: depth
+ """
+ if self.channels_last==True:
+ print("self.channels_last = ", self.channels_last)
+ x.contiguous(memory_format=torch.channels_last)
+
+
+ layer_1 = self.pretrained.layer1(x)
+ layer_2 = self.pretrained.layer2(layer_1)
+ layer_3 = self.pretrained.layer3(layer_2)
+ layer_4 = self.pretrained.layer4(layer_3)
+
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
+
+
+ path_4 = self.scratch.refinenet4(layer_4_rn)
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
+
+ out = self.scratch.output_conv(path_1)
+
+ return torch.squeeze(out, dim=1)
+
+
+
+def fuse_model(m):
+ prev_previous_type = nn.Identity()
+ prev_previous_name = ''
+ previous_type = nn.Identity()
+ previous_name = ''
+ for name, module in m.named_modules():
+ if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
+ # print("FUSED ", prev_previous_name, previous_name, name)
+ torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
+ elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
+ # print("FUSED ", prev_previous_name, previous_name)
+ torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
+ # elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
+ # print("FUSED ", previous_name, name)
+ # torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
+
+ prev_previous_type = previous_type
+ prev_previous_name = previous_name
+ previous_type = type(module)
+ previous_name = name
\ No newline at end of file
diff --git a/ldm/modules/midas/midas/transforms.py b/ldm/modules/midas/midas/transforms.py
new file mode 100644
index 0000000000000000000000000000000000000000..350cbc11662633ad7f8968eb10be2e7de6e384e9
--- /dev/null
+++ b/ldm/modules/midas/midas/transforms.py
@@ -0,0 +1,234 @@
+import numpy as np
+import cv2
+import math
+
+
+def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
+ """Rezise the sample to ensure the given size. Keeps aspect ratio.
+
+ Args:
+ sample (dict): sample
+ size (tuple): image size
+
+ Returns:
+ tuple: new size
+ """
+ shape = list(sample["disparity"].shape)
+
+ if shape[0] >= size[0] and shape[1] >= size[1]:
+ return sample
+
+ scale = [0, 0]
+ scale[0] = size[0] / shape[0]
+ scale[1] = size[1] / shape[1]
+
+ scale = max(scale)
+
+ shape[0] = math.ceil(scale * shape[0])
+ shape[1] = math.ceil(scale * shape[1])
+
+ # resize
+ sample["image"] = cv2.resize(
+ sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
+ )
+
+ sample["disparity"] = cv2.resize(
+ sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
+ )
+ sample["mask"] = cv2.resize(
+ sample["mask"].astype(np.float32),
+ tuple(shape[::-1]),
+ interpolation=cv2.INTER_NEAREST,
+ )
+ sample["mask"] = sample["mask"].astype(bool)
+
+ return tuple(shape)
+
+
+class Resize(object):
+ """Resize sample to given size (width, height).
+ """
+
+ def __init__(
+ self,
+ width,
+ height,
+ resize_target=True,
+ keep_aspect_ratio=False,
+ ensure_multiple_of=1,
+ resize_method="lower_bound",
+ image_interpolation_method=cv2.INTER_AREA,
+ ):
+ """Init.
+
+ Args:
+ width (int): desired output width
+ height (int): desired output height
+ resize_target (bool, optional):
+ True: Resize the full sample (image, mask, target).
+ False: Resize image only.
+ Defaults to True.
+ keep_aspect_ratio (bool, optional):
+ True: Keep the aspect ratio of the input sample.
+ Output sample might not have the given width and height, and
+ resize behaviour depends on the parameter 'resize_method'.
+ Defaults to False.
+ ensure_multiple_of (int, optional):
+ Output width and height is constrained to be multiple of this parameter.
+ Defaults to 1.
+ resize_method (str, optional):
+ "lower_bound": Output will be at least as large as the given size.
+ "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
+ "minimal": Scale as least as possible. (Output size might be smaller than given size.)
+ Defaults to "lower_bound".
+ """
+ self.__width = width
+ self.__height = height
+
+ self.__resize_target = resize_target
+ self.__keep_aspect_ratio = keep_aspect_ratio
+ self.__multiple_of = ensure_multiple_of
+ self.__resize_method = resize_method
+ self.__image_interpolation_method = image_interpolation_method
+
+ def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
+ y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
+
+ if max_val is not None and y > max_val:
+ y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
+
+ if y < min_val:
+ y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
+
+ return y
+
+ def get_size(self, width, height):
+ # determine new height and width
+ scale_height = self.__height / height
+ scale_width = self.__width / width
+
+ if self.__keep_aspect_ratio:
+ if self.__resize_method == "lower_bound":
+ # scale such that output size is lower bound
+ if scale_width > scale_height:
+ # fit width
+ scale_height = scale_width
+ else:
+ # fit height
+ scale_width = scale_height
+ elif self.__resize_method == "upper_bound":
+ # scale such that output size is upper bound
+ if scale_width < scale_height:
+ # fit width
+ scale_height = scale_width
+ else:
+ # fit height
+ scale_width = scale_height
+ elif self.__resize_method == "minimal":
+ # scale as least as possbile
+ if abs(1 - scale_width) < abs(1 - scale_height):
+ # fit width
+ scale_height = scale_width
+ else:
+ # fit height
+ scale_width = scale_height
+ else:
+ raise ValueError(
+ f"resize_method {self.__resize_method} not implemented"
+ )
+
+ if self.__resize_method == "lower_bound":
+ new_height = self.constrain_to_multiple_of(
+ scale_height * height, min_val=self.__height
+ )
+ new_width = self.constrain_to_multiple_of(
+ scale_width * width, min_val=self.__width
+ )
+ elif self.__resize_method == "upper_bound":
+ new_height = self.constrain_to_multiple_of(
+ scale_height * height, max_val=self.__height
+ )
+ new_width = self.constrain_to_multiple_of(
+ scale_width * width, max_val=self.__width
+ )
+ elif self.__resize_method == "minimal":
+ new_height = self.constrain_to_multiple_of(scale_height * height)
+ new_width = self.constrain_to_multiple_of(scale_width * width)
+ else:
+ raise ValueError(f"resize_method {self.__resize_method} not implemented")
+
+ return (new_width, new_height)
+
+ def __call__(self, sample):
+ width, height = self.get_size(
+ sample["image"].shape[1], sample["image"].shape[0]
+ )
+
+ # resize sample
+ sample["image"] = cv2.resize(
+ sample["image"],
+ (width, height),
+ interpolation=self.__image_interpolation_method,
+ )
+
+ if self.__resize_target:
+ if "disparity" in sample:
+ sample["disparity"] = cv2.resize(
+ sample["disparity"],
+ (width, height),
+ interpolation=cv2.INTER_NEAREST,
+ )
+
+ if "depth" in sample:
+ sample["depth"] = cv2.resize(
+ sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
+ )
+
+ sample["mask"] = cv2.resize(
+ sample["mask"].astype(np.float32),
+ (width, height),
+ interpolation=cv2.INTER_NEAREST,
+ )
+ sample["mask"] = sample["mask"].astype(bool)
+
+ return sample
+
+
+class NormalizeImage(object):
+ """Normlize image by given mean and std.
+ """
+
+ def __init__(self, mean, std):
+ self.__mean = mean
+ self.__std = std
+
+ def __call__(self, sample):
+ sample["image"] = (sample["image"] - self.__mean) / self.__std
+
+ return sample
+
+
+class PrepareForNet(object):
+ """Prepare sample for usage as network input.
+ """
+
+ def __init__(self):
+ pass
+
+ def __call__(self, sample):
+ image = np.transpose(sample["image"], (2, 0, 1))
+ sample["image"] = np.ascontiguousarray(image).astype(np.float32)
+
+ if "mask" in sample:
+ sample["mask"] = sample["mask"].astype(np.float32)
+ sample["mask"] = np.ascontiguousarray(sample["mask"])
+
+ if "disparity" in sample:
+ disparity = sample["disparity"].astype(np.float32)
+ sample["disparity"] = np.ascontiguousarray(disparity)
+
+ if "depth" in sample:
+ depth = sample["depth"].astype(np.float32)
+ sample["depth"] = np.ascontiguousarray(depth)
+
+ return sample
diff --git a/ldm/modules/midas/midas/vit.py b/ldm/modules/midas/midas/vit.py
new file mode 100644
index 0000000000000000000000000000000000000000..ea46b1be88b261b0dec04f3da0256f5f66f88a74
--- /dev/null
+++ b/ldm/modules/midas/midas/vit.py
@@ -0,0 +1,491 @@
+import torch
+import torch.nn as nn
+import timm
+import types
+import math
+import torch.nn.functional as F
+
+
+class Slice(nn.Module):
+ def __init__(self, start_index=1):
+ super(Slice, self).__init__()
+ self.start_index = start_index
+
+ def forward(self, x):
+ return x[:, self.start_index :]
+
+
+class AddReadout(nn.Module):
+ def __init__(self, start_index=1):
+ super(AddReadout, self).__init__()
+ self.start_index = start_index
+
+ def forward(self, x):
+ if self.start_index == 2:
+ readout = (x[:, 0] + x[:, 1]) / 2
+ else:
+ readout = x[:, 0]
+ return x[:, self.start_index :] + readout.unsqueeze(1)
+
+
+class ProjectReadout(nn.Module):
+ def __init__(self, in_features, start_index=1):
+ super(ProjectReadout, self).__init__()
+ self.start_index = start_index
+
+ self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
+
+ def forward(self, x):
+ readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
+ features = torch.cat((x[:, self.start_index :], readout), -1)
+
+ return self.project(features)
+
+
+class Transpose(nn.Module):
+ def __init__(self, dim0, dim1):
+ super(Transpose, self).__init__()
+ self.dim0 = dim0
+ self.dim1 = dim1
+
+ def forward(self, x):
+ x = x.transpose(self.dim0, self.dim1)
+ return x
+
+
+def forward_vit(pretrained, x):
+ b, c, h, w = x.shape
+
+ glob = pretrained.model.forward_flex(x)
+
+ layer_1 = pretrained.activations["1"]
+ layer_2 = pretrained.activations["2"]
+ layer_3 = pretrained.activations["3"]
+ layer_4 = pretrained.activations["4"]
+
+ layer_1 = pretrained.act_postprocess1[0:2](layer_1)
+ layer_2 = pretrained.act_postprocess2[0:2](layer_2)
+ layer_3 = pretrained.act_postprocess3[0:2](layer_3)
+ layer_4 = pretrained.act_postprocess4[0:2](layer_4)
+
+ unflatten = nn.Sequential(
+ nn.Unflatten(
+ 2,
+ torch.Size(
+ [
+ h // pretrained.model.patch_size[1],
+ w // pretrained.model.patch_size[0],
+ ]
+ ),
+ )
+ )
+
+ if layer_1.ndim == 3:
+ layer_1 = unflatten(layer_1)
+ if layer_2.ndim == 3:
+ layer_2 = unflatten(layer_2)
+ if layer_3.ndim == 3:
+ layer_3 = unflatten(layer_3)
+ if layer_4.ndim == 3:
+ layer_4 = unflatten(layer_4)
+
+ layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
+ layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
+ layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
+ layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
+
+ return layer_1, layer_2, layer_3, layer_4
+
+
+def _resize_pos_embed(self, posemb, gs_h, gs_w):
+ posemb_tok, posemb_grid = (
+ posemb[:, : self.start_index],
+ posemb[0, self.start_index :],
+ )
+
+ gs_old = int(math.sqrt(len(posemb_grid)))
+
+ posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
+ posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
+ posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
+
+ posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
+
+ return posemb
+
+
+def forward_flex(self, x):
+ b, c, h, w = x.shape
+
+ pos_embed = self._resize_pos_embed(
+ self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
+ )
+
+ B = x.shape[0]
+
+ if hasattr(self.patch_embed, "backbone"):
+ x = self.patch_embed.backbone(x)
+ if isinstance(x, (list, tuple)):
+ x = x[-1] # last feature if backbone outputs list/tuple of features
+
+ x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
+
+ if getattr(self, "dist_token", None) is not None:
+ cls_tokens = self.cls_token.expand(
+ B, -1, -1
+ ) # stole cls_tokens impl from Phil Wang, thanks
+ dist_token = self.dist_token.expand(B, -1, -1)
+ x = torch.cat((cls_tokens, dist_token, x), dim=1)
+ else:
+ cls_tokens = self.cls_token.expand(
+ B, -1, -1
+ ) # stole cls_tokens impl from Phil Wang, thanks
+ x = torch.cat((cls_tokens, x), dim=1)
+
+ x = x + pos_embed
+ x = self.pos_drop(x)
+
+ for blk in self.blocks:
+ x = blk(x)
+
+ x = self.norm(x)
+
+ return x
+
+
+activations = {}
+
+
+def get_activation(name):
+ def hook(model, input, output):
+ activations[name] = output
+
+ return hook
+
+
+def get_readout_oper(vit_features, features, use_readout, start_index=1):
+ if use_readout == "ignore":
+ readout_oper = [Slice(start_index)] * len(features)
+ elif use_readout == "add":
+ readout_oper = [AddReadout(start_index)] * len(features)
+ elif use_readout == "project":
+ readout_oper = [
+ ProjectReadout(vit_features, start_index) for out_feat in features
+ ]
+ else:
+ assert (
+ False
+ ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
+
+ return readout_oper
+
+
+def _make_vit_b16_backbone(
+ model,
+ features=[96, 192, 384, 768],
+ size=[384, 384],
+ hooks=[2, 5, 8, 11],
+ vit_features=768,
+ use_readout="ignore",
+ start_index=1,
+):
+ pretrained = nn.Module()
+
+ pretrained.model = model
+ pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
+ pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
+ pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
+ pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
+
+ pretrained.activations = activations
+
+ readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
+
+ # 32, 48, 136, 384
+ pretrained.act_postprocess1 = nn.Sequential(
+ readout_oper[0],
+ Transpose(1, 2),
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
+ nn.Conv2d(
+ in_channels=vit_features,
+ out_channels=features[0],
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ ),
+ nn.ConvTranspose2d(
+ in_channels=features[0],
+ out_channels=features[0],
+ kernel_size=4,
+ stride=4,
+ padding=0,
+ bias=True,
+ dilation=1,
+ groups=1,
+ ),
+ )
+
+ pretrained.act_postprocess2 = nn.Sequential(
+ readout_oper[1],
+ Transpose(1, 2),
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
+ nn.Conv2d(
+ in_channels=vit_features,
+ out_channels=features[1],
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ ),
+ nn.ConvTranspose2d(
+ in_channels=features[1],
+ out_channels=features[1],
+ kernel_size=2,
+ stride=2,
+ padding=0,
+ bias=True,
+ dilation=1,
+ groups=1,
+ ),
+ )
+
+ pretrained.act_postprocess3 = nn.Sequential(
+ readout_oper[2],
+ Transpose(1, 2),
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
+ nn.Conv2d(
+ in_channels=vit_features,
+ out_channels=features[2],
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ ),
+ )
+
+ pretrained.act_postprocess4 = nn.Sequential(
+ readout_oper[3],
+ Transpose(1, 2),
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
+ nn.Conv2d(
+ in_channels=vit_features,
+ out_channels=features[3],
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ ),
+ nn.Conv2d(
+ in_channels=features[3],
+ out_channels=features[3],
+ kernel_size=3,
+ stride=2,
+ padding=1,
+ ),
+ )
+
+ pretrained.model.start_index = start_index
+ pretrained.model.patch_size = [16, 16]
+
+ # We inject this function into the VisionTransformer instances so that
+ # we can use it with interpolated position embeddings without modifying the library source.
+ pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
+ pretrained.model._resize_pos_embed = types.MethodType(
+ _resize_pos_embed, pretrained.model
+ )
+
+ return pretrained
+
+
+def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
+ model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
+
+ hooks = [5, 11, 17, 23] if hooks == None else hooks
+ return _make_vit_b16_backbone(
+ model,
+ features=[256, 512, 1024, 1024],
+ hooks=hooks,
+ vit_features=1024,
+ use_readout=use_readout,
+ )
+
+
+def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
+ model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
+
+ hooks = [2, 5, 8, 11] if hooks == None else hooks
+ return _make_vit_b16_backbone(
+ model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
+ )
+
+
+def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
+ model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
+
+ hooks = [2, 5, 8, 11] if hooks == None else hooks
+ return _make_vit_b16_backbone(
+ model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
+ )
+
+
+def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
+ model = timm.create_model(
+ "vit_deit_base_distilled_patch16_384", pretrained=pretrained
+ )
+
+ hooks = [2, 5, 8, 11] if hooks == None else hooks
+ return _make_vit_b16_backbone(
+ model,
+ features=[96, 192, 384, 768],
+ hooks=hooks,
+ use_readout=use_readout,
+ start_index=2,
+ )
+
+
+def _make_vit_b_rn50_backbone(
+ model,
+ features=[256, 512, 768, 768],
+ size=[384, 384],
+ hooks=[0, 1, 8, 11],
+ vit_features=768,
+ use_vit_only=False,
+ use_readout="ignore",
+ start_index=1,
+):
+ pretrained = nn.Module()
+
+ pretrained.model = model
+
+ if use_vit_only == True:
+ pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
+ pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
+ else:
+ pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
+ get_activation("1")
+ )
+ pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
+ get_activation("2")
+ )
+
+ pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
+ pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
+
+ pretrained.activations = activations
+
+ readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
+
+ if use_vit_only == True:
+ pretrained.act_postprocess1 = nn.Sequential(
+ readout_oper[0],
+ Transpose(1, 2),
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
+ nn.Conv2d(
+ in_channels=vit_features,
+ out_channels=features[0],
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ ),
+ nn.ConvTranspose2d(
+ in_channels=features[0],
+ out_channels=features[0],
+ kernel_size=4,
+ stride=4,
+ padding=0,
+ bias=True,
+ dilation=1,
+ groups=1,
+ ),
+ )
+
+ pretrained.act_postprocess2 = nn.Sequential(
+ readout_oper[1],
+ Transpose(1, 2),
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
+ nn.Conv2d(
+ in_channels=vit_features,
+ out_channels=features[1],
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ ),
+ nn.ConvTranspose2d(
+ in_channels=features[1],
+ out_channels=features[1],
+ kernel_size=2,
+ stride=2,
+ padding=0,
+ bias=True,
+ dilation=1,
+ groups=1,
+ ),
+ )
+ else:
+ pretrained.act_postprocess1 = nn.Sequential(
+ nn.Identity(), nn.Identity(), nn.Identity()
+ )
+ pretrained.act_postprocess2 = nn.Sequential(
+ nn.Identity(), nn.Identity(), nn.Identity()
+ )
+
+ pretrained.act_postprocess3 = nn.Sequential(
+ readout_oper[2],
+ Transpose(1, 2),
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
+ nn.Conv2d(
+ in_channels=vit_features,
+ out_channels=features[2],
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ ),
+ )
+
+ pretrained.act_postprocess4 = nn.Sequential(
+ readout_oper[3],
+ Transpose(1, 2),
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
+ nn.Conv2d(
+ in_channels=vit_features,
+ out_channels=features[3],
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ ),
+ nn.Conv2d(
+ in_channels=features[3],
+ out_channels=features[3],
+ kernel_size=3,
+ stride=2,
+ padding=1,
+ ),
+ )
+
+ pretrained.model.start_index = start_index
+ pretrained.model.patch_size = [16, 16]
+
+ # We inject this function into the VisionTransformer instances so that
+ # we can use it with interpolated position embeddings without modifying the library source.
+ pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
+
+ # We inject this function into the VisionTransformer instances so that
+ # we can use it with interpolated position embeddings without modifying the library source.
+ pretrained.model._resize_pos_embed = types.MethodType(
+ _resize_pos_embed, pretrained.model
+ )
+
+ return pretrained
+
+
+def _make_pretrained_vitb_rn50_384(
+ pretrained, use_readout="ignore", hooks=None, use_vit_only=False
+):
+ model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
+
+ hooks = [0, 1, 8, 11] if hooks == None else hooks
+ return _make_vit_b_rn50_backbone(
+ model,
+ features=[256, 512, 768, 768],
+ size=[384, 384],
+ hooks=hooks,
+ use_vit_only=use_vit_only,
+ use_readout=use_readout,
+ )
diff --git a/ldm/modules/midas/utils.py b/ldm/modules/midas/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..9a9d3b5b66370fa98da9e067ba53ead848ea9a59
--- /dev/null
+++ b/ldm/modules/midas/utils.py
@@ -0,0 +1,189 @@
+"""Utils for monoDepth."""
+import sys
+import re
+import numpy as np
+import cv2
+import torch
+
+
+def read_pfm(path):
+ """Read pfm file.
+
+ Args:
+ path (str): path to file
+
+ Returns:
+ tuple: (data, scale)
+ """
+ with open(path, "rb") as file:
+
+ color = None
+ width = None
+ height = None
+ scale = None
+ endian = None
+
+ header = file.readline().rstrip()
+ if header.decode("ascii") == "PF":
+ color = True
+ elif header.decode("ascii") == "Pf":
+ color = False
+ else:
+ raise Exception("Not a PFM file: " + path)
+
+ dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
+ if dim_match:
+ width, height = list(map(int, dim_match.groups()))
+ else:
+ raise Exception("Malformed PFM header.")
+
+ scale = float(file.readline().decode("ascii").rstrip())
+ if scale < 0:
+ # little-endian
+ endian = "<"
+ scale = -scale
+ else:
+ # big-endian
+ endian = ">"
+
+ data = np.fromfile(file, endian + "f")
+ shape = (height, width, 3) if color else (height, width)
+
+ data = np.reshape(data, shape)
+ data = np.flipud(data)
+
+ return data, scale
+
+
+def write_pfm(path, image, scale=1):
+ """Write pfm file.
+
+ Args:
+ path (str): pathto file
+ image (array): data
+ scale (int, optional): Scale. Defaults to 1.
+ """
+
+ with open(path, "wb") as file:
+ color = None
+
+ if image.dtype.name != "float32":
+ raise Exception("Image dtype must be float32.")
+
+ image = np.flipud(image)
+
+ if len(image.shape) == 3 and image.shape[2] == 3: # color image
+ color = True
+ elif (
+ len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
+ ): # greyscale
+ color = False
+ else:
+ raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
+
+ file.write("PF\n" if color else "Pf\n".encode())
+ file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
+
+ endian = image.dtype.byteorder
+
+ if endian == "<" or endian == "=" and sys.byteorder == "little":
+ scale = -scale
+
+ file.write("%f\n".encode() % scale)
+
+ image.tofile(file)
+
+
+def read_image(path):
+ """Read image and output RGB image (0-1).
+
+ Args:
+ path (str): path to file
+
+ Returns:
+ array: RGB image (0-1)
+ """
+ img = cv2.imread(path)
+
+ if img.ndim == 2:
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
+
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
+
+ return img
+
+
+def resize_image(img):
+ """Resize image and make it fit for network.
+
+ Args:
+ img (array): image
+
+ Returns:
+ tensor: data ready for network
+ """
+ height_orig = img.shape[0]
+ width_orig = img.shape[1]
+
+ if width_orig > height_orig:
+ scale = width_orig / 384
+ else:
+ scale = height_orig / 384
+
+ height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
+ width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
+
+ img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
+
+ img_resized = (
+ torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
+ )
+ img_resized = img_resized.unsqueeze(0)
+
+ return img_resized
+
+
+def resize_depth(depth, width, height):
+ """Resize depth map and bring to CPU (numpy).
+
+ Args:
+ depth (tensor): depth
+ width (int): image width
+ height (int): image height
+
+ Returns:
+ array: processed depth
+ """
+ depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
+
+ depth_resized = cv2.resize(
+ depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
+ )
+
+ return depth_resized
+
+def write_depth(path, depth, bits=1):
+ """Write depth map to pfm and png file.
+
+ Args:
+ path (str): filepath without extension
+ depth (array): depth
+ """
+ write_pfm(path + ".pfm", depth.astype(np.float32))
+
+ depth_min = depth.min()
+ depth_max = depth.max()
+
+ max_val = (2**(8*bits))-1
+
+ if depth_max - depth_min > np.finfo("float").eps:
+ out = max_val * (depth - depth_min) / (depth_max - depth_min)
+ else:
+ out = np.zeros(depth.shape, dtype=depth.type)
+
+ if bits == 1:
+ cv2.imwrite(path + ".png", out.astype("uint8"))
+ elif bits == 2:
+ cv2.imwrite(path + ".png", out.astype("uint16"))
+
+ return
diff --git a/ldm/util.py b/ldm/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..513dca784687a7766035ef8d8ec8acd7b522eeea
--- /dev/null
+++ b/ldm/util.py
@@ -0,0 +1,199 @@
+import importlib
+
+import torch
+from torch import optim
+import numpy as np
+
+from inspect import isfunction
+from PIL import Image, ImageDraw, ImageFont
+
+
+def log_txt_as_img(wh, xc, size=10):
+ # wh a tuple of (width, height)
+ # xc a list of captions to plot
+ b = len(xc)
+ txts = list()
+ for bi in range(b):
+ txt = Image.new("RGB", wh, color="white")
+ draw = ImageDraw.Draw(txt)
+ font = ImageFont.truetype('font/DejaVuSans.ttf', size=size)
+ nc = int(40 * (wh[0] / 256))
+ lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
+
+ try:
+ draw.text((0, 0), lines, fill="black", font=font)
+ except UnicodeEncodeError:
+ print("Cant encode string for logging. Skipping.")
+
+ txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
+ txts.append(txt)
+ txts = np.stack(txts)
+ txts = torch.tensor(txts)
+ return txts
+
+
+
+
+def ismap(x):
+ if not isinstance(x, torch.Tensor):
+ return False
+ return (len(x.shape) == 4) and (x.shape[1] > 3)
+
+
+def isimage(x):
+ if not isinstance(x,torch.Tensor):
+ return False
+ return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
+
+
+def exists(x):
+ return x is not None
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def mean_flat(tensor):
+ """
+ https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
+ Take the mean over all non-batch dimensions.
+ """
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def count_params(model, verbose=False):
+ total_params = sum(p.numel() for p in model.parameters())
+ if verbose:
+ print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
+ return total_params
+
+
+def instantiate_from_config(config):
+ if not "target" in config:
+ if config == '__is_first_stage__':
+ return None
+ elif config == "__is_unconditional__":
+ return None
+ raise KeyError("Expected key `target` to instantiate.")
+ return get_obj_from_str(config["target"])(**config.get("params", dict()))
+
+
+def get_obj_from_str(string, reload=False):
+ module, cls = string.rsplit(".", 1)
+ if reload:
+ module_imp = importlib.import_module(module)
+ importlib.reload(module_imp)
+ return getattr(importlib.import_module(module, package=None), cls)
+
+
+class AdamWwithEMAandWings(optim.Optimizer):
+ # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
+ def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using
+ weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code
+ ema_power=1., param_names=()):
+ """AdamW that saves EMA versions of the parameters."""
+ if not 0.0 <= lr:
+ raise ValueError("Invalid learning rate: {}".format(lr))
+ if not 0.0 <= eps:
+ raise ValueError("Invalid epsilon value: {}".format(eps))
+ if not 0.0 <= betas[0] < 1.0:
+ raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
+ if not 0.0 <= betas[1] < 1.0:
+ raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
+ if not 0.0 <= weight_decay:
+ raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
+ if not 0.0 <= ema_decay <= 1.0:
+ raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
+ defaults = dict(lr=lr, betas=betas, eps=eps,
+ weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
+ ema_power=ema_power, param_names=param_names)
+ super().__init__(params, defaults)
+
+ def __setstate__(self, state):
+ super().__setstate__(state)
+ for group in self.param_groups:
+ group.setdefault('amsgrad', False)
+
+ @torch.no_grad()
+ def step(self, closure=None):
+ """Performs a single optimization step.
+ Args:
+ closure (callable, optional): A closure that reevaluates the model
+ and returns the loss.
+ """
+ loss = None
+ if closure is not None:
+ with torch.enable_grad():
+ loss = closure()
+
+ for group in self.param_groups:
+ params_with_grad = []
+ grads = []
+ exp_avgs = []
+ exp_avg_sqs = []
+ ema_params_with_grad = []
+ state_sums = []
+ max_exp_avg_sqs = []
+ state_steps = []
+ amsgrad = group['amsgrad']
+ beta1, beta2 = group['betas']
+ ema_decay = group['ema_decay']
+ ema_power = group['ema_power']
+
+ for p in group['params']:
+ if p.grad is None:
+ continue
+ params_with_grad.append(p)
+ if p.grad.is_sparse:
+ raise RuntimeError('AdamW does not support sparse gradients')
+ grads.append(p.grad)
+
+ state = self.state[p]
+
+ # State initialization
+ if len(state) == 0:
+ state['step'] = 0
+ # Exponential moving average of gradient values
+ state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
+ # Exponential moving average of squared gradient values
+ state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
+ if amsgrad:
+ # Maintains max of all exp. moving avg. of sq. grad. values
+ state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
+ # Exponential moving average of parameter values
+ state['param_exp_avg'] = p.detach().float().clone()
+
+ exp_avgs.append(state['exp_avg'])
+ exp_avg_sqs.append(state['exp_avg_sq'])
+ ema_params_with_grad.append(state['param_exp_avg'])
+
+ if amsgrad:
+ max_exp_avg_sqs.append(state['max_exp_avg_sq'])
+
+ # update the steps for each param group update
+ state['step'] += 1
+ # record the step after step update
+ state_steps.append(state['step'])
+
+ optim._functional.adamw(params_with_grad,
+ grads,
+ exp_avgs,
+ exp_avg_sqs,
+ max_exp_avg_sqs,
+ state_steps,
+ amsgrad=amsgrad,
+ beta1=beta1,
+ beta2=beta2,
+ lr=group['lr'],
+ weight_decay=group['weight_decay'],
+ eps=group['eps'],
+ maximize=False)
+
+ cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
+ for param, ema_param in zip(params_with_grad, ema_params_with_grad):
+ ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
+
+ return loss
\ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e0225a37c4abd9a46e97a4f46c837cc969477c13
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,23 @@
+albumentations==1.3.0
+einops==0.3.0
+fvcore==0.1.5.post20221221
+gradio==3.39.0
+numpy==1.23.1
+omegaconf==2.1.1
+open_clip_torch==2.17.1
+opencv_contrib_python #==4.3.0.36
+opencv_python==4.7.0.72
+opencv_python_headless==4.7.0.72
+Pillow==9.4.0
+pytorch_lightning==1.5.0
+safetensors==0.2.7
+scipy==1.9.1
+setuptools==66.0.0
+share==1.0.4
+submitit==1.5.1
+timm==0.6.12
+torch==2.0.0
+torchmetrics==0.6.0
+tqdm==4.65.0
+transformers==4.19.2
+xformers==0.0.18