import json import cv2 import numpy as np import os from torch.utils.data import Dataset from PIL import Image import cv2 from .data_utils import * from .base import BaseDataset from pycocotools import mask as mask_utils class UVOValDataset(BaseDataset): def __init__(self, image_dir, video_json, image_json): json_path = video_json with open(json_path, 'r') as fcc_file: data = json.load(fcc_file) image_json_path = image_json with open(image_json_path , 'r') as image_file: video_dict = json.load(image_file) self.image_root = image_dir self.data = data['annotations'] self.video_dict = video_dict self.size = (512,512) self.clip_size = (224,224) self.dynamic = 1 def __len__(self): return 8000 def __getitem__(self, idx): while(1): idx = np.random.randint(0, len(self.data)-1) try: item = self.get_sample(idx) return item except: idx = np.random.randint(0, len(self.data)-1) def check_region_size(self, image, yyxx, ratio, mode = 'max'): pass_flag = True H,W = image.shape[0], image.shape[1] H,W = H * ratio, W * ratio y1,y2,x1,x2 = yyxx h,w = y2-y1,x2-x1 if mode == 'max': if h > H and w > W: pass_flag = False elif mode == 'min': if h < H and w < W: pass_flag = False return pass_flag def get_sample(self, idx): ins_anno = self.data[idx] video_id = str(ins_anno['video_id']) video_names = self.video_dict[video_id] masks = ins_anno['segmentations'] frames = video_names # Sampling frames min_interval = len(frames) // 5 start_frame_index = np.random.randint(low=0, high=len(frames) - min_interval) end_frame_index = start_frame_index + np.random.randint(min_interval, len(frames) - start_frame_index ) end_frame_index = min(end_frame_index, len(frames) - 1) # Get image path ref_image_name = frames[start_frame_index] tar_image_name = frames[end_frame_index] ref_image_path = os.path.join(self.image_root, ref_image_name) tar_image_path = os.path.join(self.image_root, tar_image_name) # Read Image and Mask ref_image = cv2.imread(ref_image_path) ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2RGB) tar_image = cv2.imread(tar_image_path) tar_image = cv2.cvtColor(tar_image, cv2.COLOR_BGR2RGB) ref_mask = mask_utils.decode(masks[start_frame_index]) tar_mask = mask_utils.decode(masks[end_frame_index]) item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask) sampled_time_steps = self.sample_timestep() item_with_collage['time_steps'] = sampled_time_steps return item_with_collage