Spaces:
Running
on
Zero
Running
on
Zero
shift to ffmpeg
Browse files- app.py +108 -98
- myapp2.py +204 -0
- packages.txt +1 -0
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import os
|
3 |
import torch
|
4 |
import numpy as np
|
@@ -10,6 +9,7 @@ from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
10 |
import cv2
|
11 |
import traceback
|
12 |
import matplotlib.pyplot as plt
|
|
|
13 |
from utils import load_model_without_flash_attn
|
14 |
|
15 |
|
@@ -62,7 +62,7 @@ def apply_color_mask(frame, mask, obj_id):
|
|
62 |
return frame * (1 - mask) + colored_mask * 255
|
63 |
|
64 |
def run_florence(image, text_input):
|
65 |
-
with torch.
|
66 |
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
67 |
prompt = task_prompt + text_input
|
68 |
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to('cuda', torch.bfloat16)
|
@@ -89,125 +89,135 @@ def remove_directory_contents(directory):
|
|
89 |
for name in dirs:
|
90 |
os.rmdir(os.path.join(root, name))
|
91 |
|
92 |
-
|
|
|
93 |
try:
|
94 |
-
video
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
|
|
100 |
|
101 |
-
#
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
point_labels=None,
|
133 |
-
box=mask_box[None, :],
|
134 |
-
multimask_output=False,
|
135 |
-
)
|
136 |
-
print("masks.shape",masks.shape)
|
137 |
-
|
138 |
-
mask = masks.squeeze().astype(bool)
|
139 |
-
print("Mask shape:", mask.shape)
|
140 |
-
print("Frame shape:", frames[0].shape)
|
141 |
-
|
142 |
-
# SAM2 video propagation
|
143 |
-
temp_dir = f"temp_frames_{chunk_start}"
|
144 |
-
os.makedirs(temp_dir, exist_ok=True)
|
145 |
-
for i, frame in enumerate(frames):
|
146 |
-
cv2.imwrite(os.path.join(temp_dir, f"{i:04d}.jpg"), cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
147 |
-
|
148 |
-
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
149 |
-
inference_state = video_predictor.init_state(video_path=temp_dir)
|
150 |
-
_, _, _ = video_predictor.add_new_mask(
|
151 |
-
inference_state=inference_state,
|
152 |
-
frame_idx=0,
|
153 |
-
obj_id=1,
|
154 |
-
mask=mask
|
155 |
-
)
|
156 |
-
|
157 |
-
video_segments = {}
|
158 |
-
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
|
159 |
-
video_segments[out_frame_idx] = {
|
160 |
-
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
161 |
-
for i, out_obj_id in enumerate(out_obj_ids)
|
162 |
-
}
|
163 |
-
|
164 |
-
print('segmenting for main vid done')
|
165 |
-
|
166 |
-
# Apply segmentation masks to frames
|
167 |
-
for i, frame in enumerate(frames):
|
168 |
-
if i in video_segments:
|
169 |
-
for out_obj_id, mask in video_segments[i].items():
|
170 |
-
frame = apply_color_mask(frame, mask, out_obj_id)
|
171 |
-
all_segmented_frames.append(frame.astype(np.uint8))
|
172 |
-
else:
|
173 |
-
all_segmented_frames.append(frame)
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
185 |
output_path = "segmented_video.mp4"
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
for frame in all_segmented_frames:
|
189 |
-
|
190 |
-
|
|
|
|
|
191 |
|
|
|
|
|
|
|
|
|
192 |
return output_path
|
193 |
|
194 |
except Exception as e:
|
195 |
print(f"Error in process_video: {str(e)}")
|
196 |
print(traceback.format_exc()) # This will print the full stack trace
|
197 |
return None
|
198 |
-
|
199 |
-
def segment_video(video_file, prompt
|
200 |
if video_file is None:
|
201 |
return None
|
202 |
-
output_video = process_video(video_file, prompt
|
203 |
return output_video
|
204 |
|
205 |
demo = gr.Interface(
|
206 |
fn=segment_video,
|
207 |
inputs=[
|
208 |
gr.Video(label="Upload Video"),
|
209 |
-
gr.Textbox(label="Enter prompt (e.g., 'a gymnast')")
|
210 |
-
gr.Slider(minimum=10, maximum=100, step=10, value=30, label="Chunk Size (frames)")
|
211 |
],
|
212 |
outputs=gr.Video(label="Segmented Video"),
|
213 |
title="Video Object Segmentation with Florence and SAM2",
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
import numpy as np
|
|
|
9 |
import cv2
|
10 |
import traceback
|
11 |
import matplotlib.pyplot as plt
|
12 |
+
import ffmpeg
|
13 |
from utils import load_model_without_flash_attn
|
14 |
|
15 |
|
|
|
62 |
return frame * (1 - mask) + colored_mask * 255
|
63 |
|
64 |
def run_florence(image, text_input):
|
65 |
+
with torch.amp.autocast(dtype=torch.bfloat16):
|
66 |
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
67 |
prompt = task_prompt + text_input
|
68 |
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to('cuda', torch.bfloat16)
|
|
|
89 |
for name in dirs:
|
90 |
os.rmdir(os.path.join(root, name))
|
91 |
|
92 |
+
|
93 |
+
def process_video(video_path, prompt):
|
94 |
try:
|
95 |
+
# Get video info
|
96 |
+
probe = ffmpeg.probe(video_path)
|
97 |
+
video_info = next(s for s in probe['streams'] if s['codec_type'] == 'video')
|
98 |
+
width = int(video_info['width'])
|
99 |
+
height = int(video_info['height'])
|
100 |
+
num_frames = int(video_info['nb_frames'])
|
101 |
+
fps = eval(video_info['r_frame_rate'])
|
102 |
+
|
103 |
+
print(f"Video info: {width}x{height}, {num_frames} frames, {fps} fps")
|
104 |
+
|
105 |
+
# Read frames
|
106 |
+
out, _ = (
|
107 |
+
ffmpeg
|
108 |
+
.input(video_path)
|
109 |
+
.output('pipe:', format='rawvideo', pix_fmt='rgb24')
|
110 |
+
.run(capture_stdout=True)
|
111 |
+
)
|
112 |
+
frames = np.frombuffer(out, np.uint8).reshape([-1, height, width, 3])
|
113 |
+
|
114 |
+
print(f"Read {len(frames)} frames")
|
115 |
+
|
116 |
+
# Florence detection on first frame
|
117 |
+
first_frame = Image.fromarray(frames[0])
|
118 |
+
mask_box = run_florence(first_frame, prompt)
|
119 |
+
print("Original mask box:", mask_box)
|
120 |
|
121 |
+
# Convert mask_box to numpy array
|
122 |
+
mask_box = np.array(mask_box)
|
123 |
+
print("Reshaped mask box:", mask_box)
|
124 |
|
125 |
+
# SAM2 segmentation on first frame
|
126 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
127 |
+
image_predictor.set_image(first_frame)
|
128 |
+
masks, _, _ = image_predictor.predict(
|
129 |
+
point_coords=None,
|
130 |
+
point_labels=None,
|
131 |
+
box=mask_box[None, :],
|
132 |
+
multimask_output=False,
|
133 |
+
)
|
134 |
+
print("masks.shape", masks.shape)
|
135 |
+
|
136 |
+
mask = masks.squeeze().astype(bool)
|
137 |
+
print("Mask shape:", mask.shape)
|
138 |
+
print("Frame shape:", frames[0].shape)
|
139 |
+
|
140 |
+
# SAM2 video propagation
|
141 |
+
temp_dir = "temp_frames"
|
142 |
+
os.makedirs(temp_dir, exist_ok=True)
|
143 |
+
for i, frame in enumerate(frames):
|
144 |
+
Image.fromarray(frame).save(os.path.join(temp_dir, f"{i:04d}.jpg"))
|
145 |
+
|
146 |
+
print(f"Saved {len(frames)} temporary frames")
|
147 |
+
|
148 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
149 |
+
inference_state = video_predictor.init_state(video_path=temp_dir)
|
150 |
+
_, _, _ = video_predictor.add_new_mask(
|
151 |
+
inference_state=inference_state,
|
152 |
+
frame_idx=0,
|
153 |
+
obj_id=1,
|
154 |
+
mask=mask
|
155 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
video_segments = {}
|
158 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
|
159 |
+
video_segments[out_frame_idx] = {
|
160 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
161 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
162 |
+
}
|
163 |
+
|
164 |
+
print('Segmenting for main vid done')
|
165 |
+
print(f"Number of segmented frames: {len(video_segments)}")
|
166 |
|
167 |
+
# Apply segmentation masks to frames
|
168 |
+
all_segmented_frames = []
|
169 |
+
for i, frame in enumerate(frames):
|
170 |
+
if i in video_segments:
|
171 |
+
for out_obj_id, mask in video_segments[i].items():
|
172 |
+
frame = apply_color_mask(frame, mask, out_obj_id)
|
173 |
+
all_segmented_frames.append(frame.astype(np.uint8))
|
174 |
+
else:
|
175 |
+
all_segmented_frames.append(frame)
|
176 |
|
177 |
+
print(f"Applied masks to {len(all_segmented_frames)} frames")
|
178 |
+
|
179 |
+
# Clean up temporary files
|
180 |
+
remove_directory_contents(temp_dir)
|
181 |
+
os.rmdir(temp_dir)
|
182 |
+
|
183 |
+
# Write output video using ffmpeg
|
184 |
output_path = "segmented_video.mp4"
|
185 |
+
process = (
|
186 |
+
ffmpeg
|
187 |
+
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{width}x{height}', r=fps)
|
188 |
+
.output(output_path, pix_fmt='yuv420p')
|
189 |
+
.overwrite_output()
|
190 |
+
.run_async(pipe_stdin=True)
|
191 |
+
)
|
192 |
+
|
193 |
for frame in all_segmented_frames:
|
194 |
+
process.stdin.write(frame.tobytes())
|
195 |
+
|
196 |
+
process.stdin.close()
|
197 |
+
process.wait()
|
198 |
|
199 |
+
if not os.path.exists(output_path):
|
200 |
+
raise ValueError(f"Output video file was not created: {output_path}")
|
201 |
+
|
202 |
+
print(f"Successfully created output video: {output_path}")
|
203 |
return output_path
|
204 |
|
205 |
except Exception as e:
|
206 |
print(f"Error in process_video: {str(e)}")
|
207 |
print(traceback.format_exc()) # This will print the full stack trace
|
208 |
return None
|
209 |
+
|
210 |
+
def segment_video(video_file, prompt):
|
211 |
if video_file is None:
|
212 |
return None
|
213 |
+
output_video = process_video(video_file, prompt)
|
214 |
return output_video
|
215 |
|
216 |
demo = gr.Interface(
|
217 |
fn=segment_video,
|
218 |
inputs=[
|
219 |
gr.Video(label="Upload Video"),
|
220 |
+
gr.Textbox(label="Enter prompt (e.g., 'a gymnast')")
|
|
|
221 |
],
|
222 |
outputs=gr.Video(label="Segmented Video"),
|
223 |
title="Video Object Segmentation with Florence and SAM2",
|
myapp2.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
7 |
+
from sam2.build_sam import build_sam2_video_predictor, build_sam2
|
8 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
9 |
+
import cv2
|
10 |
+
import traceback
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
|
13 |
+
# CUDA optimizations
|
14 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
15 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
16 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
17 |
+
torch.backends.cudnn.allow_tf32 = True
|
18 |
+
|
19 |
+
# Initialize models
|
20 |
+
sam2_checkpoint = "../checkpoints/sam2_hiera_large.pt"
|
21 |
+
model_cfg = "sam2_hiera_l.yaml"
|
22 |
+
|
23 |
+
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
24 |
+
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
|
25 |
+
image_predictor = SAM2ImagePredictor(sam2_model)
|
26 |
+
|
27 |
+
model_id = 'microsoft/Florence-2-large'
|
28 |
+
florence_model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.bfloat16).eval().cuda()
|
29 |
+
florence_processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
30 |
+
|
31 |
+
def apply_color_mask(frame, mask, obj_id):
|
32 |
+
cmap = plt.get_cmap("tab10")
|
33 |
+
color = np.array(cmap(obj_id % 10)[:3]) # Use modulo 10 to cycle through colors
|
34 |
+
|
35 |
+
# Ensure mask has the correct shape
|
36 |
+
if mask.ndim == 4:
|
37 |
+
mask = mask.squeeze() # Remove singleton dimensions
|
38 |
+
if mask.ndim == 3 and mask.shape[0] == 1:
|
39 |
+
mask = mask[0] # Take the first channel if it's a single-channel 3D array
|
40 |
+
|
41 |
+
# Reshape mask to match frame dimensions
|
42 |
+
mask = cv2.resize(mask.astype(np.float32), (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_LINEAR)
|
43 |
+
|
44 |
+
# Expand dimensions of mask and color for broadcasting
|
45 |
+
mask = np.expand_dims(mask, axis=2)
|
46 |
+
color = color.reshape(1, 1, 3)
|
47 |
+
|
48 |
+
colored_mask = mask * color
|
49 |
+
return frame * (1 - mask) + colored_mask * 255
|
50 |
+
|
51 |
+
def run_florence(image, text_input):
|
52 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
53 |
+
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
54 |
+
prompt = task_prompt + text_input
|
55 |
+
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to('cuda', torch.bfloat16)
|
56 |
+
generated_ids = florence_model.generate(
|
57 |
+
input_ids=inputs["input_ids"].cuda(),
|
58 |
+
pixel_values=inputs["pixel_values"].cuda(),
|
59 |
+
max_new_tokens=1024,
|
60 |
+
early_stopping=False,
|
61 |
+
do_sample=False,
|
62 |
+
num_beams=3,
|
63 |
+
)
|
64 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
65 |
+
parsed_answer = florence_processor.post_process_generation(
|
66 |
+
generated_text,
|
67 |
+
task=task_prompt,
|
68 |
+
image_size=(image.width, image.height)
|
69 |
+
)
|
70 |
+
return parsed_answer[task_prompt]['bboxes'][0]
|
71 |
+
|
72 |
+
def remove_directory_contents(directory):
|
73 |
+
for root, dirs, files in os.walk(directory, topdown=False):
|
74 |
+
for name in files:
|
75 |
+
os.remove(os.path.join(root, name))
|
76 |
+
for name in dirs:
|
77 |
+
os.rmdir(os.path.join(root, name))
|
78 |
+
|
79 |
+
def process_video(video_path, prompt, chunk_size=30):
|
80 |
+
try:
|
81 |
+
video = cv2.VideoCapture(video_path)
|
82 |
+
if not video.isOpened():
|
83 |
+
raise ValueError("Unable to open video file")
|
84 |
+
|
85 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
86 |
+
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
87 |
+
|
88 |
+
# Process video in chunks
|
89 |
+
all_segmented_frames = []
|
90 |
+
for chunk_start in range(0, frame_count, chunk_size):
|
91 |
+
chunk_end = min(chunk_start + chunk_size, frame_count)
|
92 |
+
|
93 |
+
frames = []
|
94 |
+
video.set(cv2.CAP_PROP_POS_FRAMES, chunk_start)
|
95 |
+
for _ in range(chunk_end - chunk_start):
|
96 |
+
ret, frame = video.read()
|
97 |
+
if not ret:
|
98 |
+
break
|
99 |
+
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
100 |
+
|
101 |
+
if not frames:
|
102 |
+
print(f"No frames extracted for chunk starting at {chunk_start}")
|
103 |
+
continue
|
104 |
+
|
105 |
+
# Florence detection on first frame of the chunk
|
106 |
+
first_frame = Image.fromarray(frames[0])
|
107 |
+
mask_box = run_florence(first_frame, prompt)
|
108 |
+
print("Original mask box:", mask_box)
|
109 |
+
|
110 |
+
# Convert mask_box to numpy array and ensure it's in the correct format
|
111 |
+
mask_box = np.array(mask_box)
|
112 |
+
print("Reshaped mask box:", mask_box)
|
113 |
+
|
114 |
+
# SAM2 segmentation on first frame
|
115 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
116 |
+
image_predictor.set_image(first_frame)
|
117 |
+
masks, _, _ = image_predictor.predict(
|
118 |
+
point_coords=None,
|
119 |
+
point_labels=None,
|
120 |
+
box=mask_box[None, :],
|
121 |
+
multimask_output=False,
|
122 |
+
)
|
123 |
+
print("masks.shape",masks.shape)
|
124 |
+
|
125 |
+
mask = masks.squeeze().astype(bool)
|
126 |
+
print("Mask shape:", mask.shape)
|
127 |
+
print("Frame shape:", frames[0].shape)
|
128 |
+
|
129 |
+
# SAM2 video propagation
|
130 |
+
temp_dir = f"temp_frames_{chunk_start}"
|
131 |
+
os.makedirs(temp_dir, exist_ok=True)
|
132 |
+
for i, frame in enumerate(frames):
|
133 |
+
cv2.imwrite(os.path.join(temp_dir, f"{i:04d}.jpg"), cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
134 |
+
|
135 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
136 |
+
inference_state = video_predictor.init_state(video_path=temp_dir)
|
137 |
+
_, _, _ = video_predictor.add_new_mask(
|
138 |
+
inference_state=inference_state,
|
139 |
+
frame_idx=0,
|
140 |
+
obj_id=1,
|
141 |
+
mask=mask
|
142 |
+
)
|
143 |
+
|
144 |
+
video_segments = {}
|
145 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
|
146 |
+
video_segments[out_frame_idx] = {
|
147 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
148 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
149 |
+
}
|
150 |
+
|
151 |
+
print('segmenting for main vid done')
|
152 |
+
|
153 |
+
# Apply segmentation masks to frames
|
154 |
+
for i, frame in enumerate(frames):
|
155 |
+
if i in video_segments:
|
156 |
+
for out_obj_id, mask in video_segments[i].items():
|
157 |
+
frame = apply_color_mask(frame, mask, out_obj_id)
|
158 |
+
all_segmented_frames.append(frame.astype(np.uint8))
|
159 |
+
else:
|
160 |
+
all_segmented_frames.append(frame)
|
161 |
+
|
162 |
+
# Clean up temporary files
|
163 |
+
remove_directory_contents(temp_dir)
|
164 |
+
os.rmdir(temp_dir)
|
165 |
+
|
166 |
+
video.release()
|
167 |
+
|
168 |
+
if not all_segmented_frames:
|
169 |
+
raise ValueError("No frames were processed successfully")
|
170 |
+
|
171 |
+
# Create video from segmented frames
|
172 |
+
output_path = "segmented_video.mp4"
|
173 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
|
174 |
+
(all_segmented_frames[0].shape[1], all_segmented_frames[0].shape[0]))
|
175 |
+
for frame in all_segmented_frames:
|
176 |
+
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
177 |
+
out.release()
|
178 |
+
|
179 |
+
return output_path
|
180 |
+
|
181 |
+
except Exception as e:
|
182 |
+
print(f"Error in process_video: {str(e)}")
|
183 |
+
print(traceback.format_exc()) # This will print the full stack trace
|
184 |
+
return None
|
185 |
+
|
186 |
+
def segment_video(video_file, prompt, chunk_size):
|
187 |
+
if video_file is None:
|
188 |
+
return None
|
189 |
+
output_video = process_video(video_file, prompt, int(chunk_size))
|
190 |
+
return output_video
|
191 |
+
|
192 |
+
demo = gr.Interface(
|
193 |
+
fn=segment_video,
|
194 |
+
inputs=[
|
195 |
+
gr.Video(label="Upload Video"),
|
196 |
+
gr.Textbox(label="Enter prompt (e.g., 'a gymnast')"),
|
197 |
+
gr.Slider(minimum=10, maximum=100, step=10, value=30, label="Chunk Size (frames)")
|
198 |
+
],
|
199 |
+
outputs=gr.Video(label="Segmented Video"),
|
200 |
+
title="Video Object Segmentation with Florence and SAM2",
|
201 |
+
description="Upload a video and provide a text prompt to segment a specific object throughout the video."
|
202 |
+
)
|
203 |
+
|
204 |
+
demo.launch()
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
CHANGED
@@ -8,4 +8,5 @@ opencv-python
|
|
8 |
matplotlib
|
9 |
einops
|
10 |
timm
|
11 |
-
pytest
|
|
|
|
8 |
matplotlib
|
9 |
einops
|
10 |
timm
|
11 |
+
pytest
|
12 |
+
ffmpeg-python
|