Spaces:
Running
on
Zero
Running
on
Zero
initial commit
Browse files- app.py +205 -0
- checkpoints/test.txt +0 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
8 |
+
from sam2.build_sam import build_sam2_video_predictor, build_sam2
|
9 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
10 |
+
import cv2
|
11 |
+
import traceback
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
|
14 |
+
# CUDA optimizations
|
15 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
16 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
17 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
18 |
+
torch.backends.cudnn.allow_tf32 = True
|
19 |
+
|
20 |
+
# Initialize models
|
21 |
+
sam2_checkpoint = "../checkpoints/sam2_hiera_large.pt"
|
22 |
+
model_cfg = "sam2_hiera_l.yaml"
|
23 |
+
|
24 |
+
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
25 |
+
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
|
26 |
+
image_predictor = SAM2ImagePredictor(sam2_model)
|
27 |
+
|
28 |
+
model_id = 'microsoft/Florence-2-large'
|
29 |
+
florence_model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.bfloat16).eval().cuda()
|
30 |
+
florence_processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
31 |
+
|
32 |
+
def apply_color_mask(frame, mask, obj_id):
|
33 |
+
cmap = plt.get_cmap("tab10")
|
34 |
+
color = np.array(cmap(obj_id % 10)[:3]) # Use modulo 10 to cycle through colors
|
35 |
+
|
36 |
+
# Ensure mask has the correct shape
|
37 |
+
if mask.ndim == 4:
|
38 |
+
mask = mask.squeeze() # Remove singleton dimensions
|
39 |
+
if mask.ndim == 3 and mask.shape[0] == 1:
|
40 |
+
mask = mask[0] # Take the first channel if it's a single-channel 3D array
|
41 |
+
|
42 |
+
# Reshape mask to match frame dimensions
|
43 |
+
mask = cv2.resize(mask.astype(np.float32), (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_LINEAR)
|
44 |
+
|
45 |
+
# Expand dimensions of mask and color for broadcasting
|
46 |
+
mask = np.expand_dims(mask, axis=2)
|
47 |
+
color = color.reshape(1, 1, 3)
|
48 |
+
|
49 |
+
colored_mask = mask * color
|
50 |
+
return frame * (1 - mask) + colored_mask * 255
|
51 |
+
|
52 |
+
def run_florence(image, text_input):
|
53 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
54 |
+
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
55 |
+
prompt = task_prompt + text_input
|
56 |
+
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to('cuda', torch.bfloat16)
|
57 |
+
generated_ids = florence_model.generate(
|
58 |
+
input_ids=inputs["input_ids"].cuda(),
|
59 |
+
pixel_values=inputs["pixel_values"].cuda(),
|
60 |
+
max_new_tokens=1024,
|
61 |
+
early_stopping=False,
|
62 |
+
do_sample=False,
|
63 |
+
num_beams=3,
|
64 |
+
)
|
65 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
66 |
+
parsed_answer = florence_processor.post_process_generation(
|
67 |
+
generated_text,
|
68 |
+
task=task_prompt,
|
69 |
+
image_size=(image.width, image.height)
|
70 |
+
)
|
71 |
+
return parsed_answer[task_prompt]['bboxes'][0]
|
72 |
+
|
73 |
+
def remove_directory_contents(directory):
|
74 |
+
for root, dirs, files in os.walk(directory, topdown=False):
|
75 |
+
for name in files:
|
76 |
+
os.remove(os.path.join(root, name))
|
77 |
+
for name in dirs:
|
78 |
+
os.rmdir(os.path.join(root, name))
|
79 |
+
|
80 |
+
def process_video(video_path, prompt, chunk_size=30):
|
81 |
+
try:
|
82 |
+
video = cv2.VideoCapture(video_path)
|
83 |
+
if not video.isOpened():
|
84 |
+
raise ValueError("Unable to open video file")
|
85 |
+
|
86 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
87 |
+
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
88 |
+
|
89 |
+
# Process video in chunks
|
90 |
+
all_segmented_frames = []
|
91 |
+
for chunk_start in range(0, frame_count, chunk_size):
|
92 |
+
chunk_end = min(chunk_start + chunk_size, frame_count)
|
93 |
+
|
94 |
+
frames = []
|
95 |
+
video.set(cv2.CAP_PROP_POS_FRAMES, chunk_start)
|
96 |
+
for _ in range(chunk_end - chunk_start):
|
97 |
+
ret, frame = video.read()
|
98 |
+
if not ret:
|
99 |
+
break
|
100 |
+
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
101 |
+
|
102 |
+
if not frames:
|
103 |
+
print(f"No frames extracted for chunk starting at {chunk_start}")
|
104 |
+
continue
|
105 |
+
|
106 |
+
# Florence detection on first frame of the chunk
|
107 |
+
first_frame = Image.fromarray(frames[0])
|
108 |
+
mask_box = run_florence(first_frame, prompt)
|
109 |
+
print("Original mask box:", mask_box)
|
110 |
+
|
111 |
+
# Convert mask_box to numpy array and ensure it's in the correct format
|
112 |
+
mask_box = np.array(mask_box)
|
113 |
+
print("Reshaped mask box:", mask_box)
|
114 |
+
|
115 |
+
# SAM2 segmentation on first frame
|
116 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
117 |
+
image_predictor.set_image(first_frame)
|
118 |
+
masks, _, _ = image_predictor.predict(
|
119 |
+
point_coords=None,
|
120 |
+
point_labels=None,
|
121 |
+
box=mask_box[None, :],
|
122 |
+
multimask_output=False,
|
123 |
+
)
|
124 |
+
print("masks.shape",masks.shape)
|
125 |
+
|
126 |
+
mask = masks.squeeze().astype(bool)
|
127 |
+
print("Mask shape:", mask.shape)
|
128 |
+
print("Frame shape:", frames[0].shape)
|
129 |
+
|
130 |
+
# SAM2 video propagation
|
131 |
+
temp_dir = f"temp_frames_{chunk_start}"
|
132 |
+
os.makedirs(temp_dir, exist_ok=True)
|
133 |
+
for i, frame in enumerate(frames):
|
134 |
+
cv2.imwrite(os.path.join(temp_dir, f"{i:04d}.jpg"), cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
135 |
+
|
136 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
137 |
+
inference_state = video_predictor.init_state(video_path=temp_dir)
|
138 |
+
_, _, _ = video_predictor.add_new_mask(
|
139 |
+
inference_state=inference_state,
|
140 |
+
frame_idx=0,
|
141 |
+
obj_id=1,
|
142 |
+
mask=mask
|
143 |
+
)
|
144 |
+
|
145 |
+
video_segments = {}
|
146 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
|
147 |
+
video_segments[out_frame_idx] = {
|
148 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
149 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
150 |
+
}
|
151 |
+
|
152 |
+
print('segmenting for main vid done')
|
153 |
+
|
154 |
+
# Apply segmentation masks to frames
|
155 |
+
for i, frame in enumerate(frames):
|
156 |
+
if i in video_segments:
|
157 |
+
for out_obj_id, mask in video_segments[i].items():
|
158 |
+
frame = apply_color_mask(frame, mask, out_obj_id)
|
159 |
+
all_segmented_frames.append(frame.astype(np.uint8))
|
160 |
+
else:
|
161 |
+
all_segmented_frames.append(frame)
|
162 |
+
|
163 |
+
# Clean up temporary files
|
164 |
+
remove_directory_contents(temp_dir)
|
165 |
+
os.rmdir(temp_dir)
|
166 |
+
|
167 |
+
video.release()
|
168 |
+
|
169 |
+
if not all_segmented_frames:
|
170 |
+
raise ValueError("No frames were processed successfully")
|
171 |
+
|
172 |
+
# Create video from segmented frames
|
173 |
+
output_path = "segmented_video.mp4"
|
174 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
|
175 |
+
(all_segmented_frames[0].shape[1], all_segmented_frames[0].shape[0]))
|
176 |
+
for frame in all_segmented_frames:
|
177 |
+
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
178 |
+
out.release()
|
179 |
+
|
180 |
+
return output_path
|
181 |
+
|
182 |
+
except Exception as e:
|
183 |
+
print(f"Error in process_video: {str(e)}")
|
184 |
+
print(traceback.format_exc()) # This will print the full stack trace
|
185 |
+
return None
|
186 |
+
|
187 |
+
def segment_video(video_file, prompt, chunk_size):
|
188 |
+
if video_file is None:
|
189 |
+
return None
|
190 |
+
output_video = process_video(video_file, prompt, int(chunk_size))
|
191 |
+
return output_video
|
192 |
+
|
193 |
+
demo = gr.Interface(
|
194 |
+
fn=segment_video,
|
195 |
+
inputs=[
|
196 |
+
gr.Video(label="Upload Video"),
|
197 |
+
gr.Textbox(label="Enter prompt (e.g., 'a gymnast')"),
|
198 |
+
gr.Slider(minimum=10, maximum=100, step=10, value=30, label="Chunk Size (frames)")
|
199 |
+
],
|
200 |
+
outputs=gr.Video(label="Segmented Video"),
|
201 |
+
title="Video Object Segmentation with Florence and SAM2",
|
202 |
+
description="Upload a video and provide a text prompt to segment a specific object throughout the video."
|
203 |
+
)
|
204 |
+
|
205 |
+
demo.launch()
|
checkpoints/test.txt
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
numpy
|
3 |
+
samv2
|
4 |
+
gradio
|
5 |
+
Pillow
|
6 |
+
transformers
|
7 |
+
opencv-python
|
8 |
+
matplotlib
|
9 |
+
einops
|
10 |
+
timm
|