File size: 4,643 Bytes
8d7815c
 
 
 
 
 
 
 
74454fb
8d7815c
 
 
67dacdd
74454fb
8d7815c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1dd03d
8d7815c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de2fe82
bc5a71e
 
 
 
 
8d7815c
 
 
 
bc5a71e
 
 
8d7815c
 
 
 
bc5a71e
 
 
a1b8157
bc5a71e
8cb329e
de2fe82
8cb329e
bc5a71e
3eddc3e
c0cd6c6
3eddc3e
8cb329e
a1b8157
8cb329e
a1b8157
8cb329e
 
e109072
 
 
 
3eddc3e
c0cd6c6
8d7815c
de2fe82
bc5a71e
 
8d7815c
bc5a71e
de2fe82
bc5a71e
 
 
 
 
de2fe82
 
8d7815c
66b8012
bc5a71e
 
de2fe82
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
import os
import random
import io
from PIL import Image
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from typing import List
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
from minigpt4.conversation.conversation import Chat, CONV_VISION
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from fastapi.responses import RedirectResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from PIL import Image
import io
import uvicorn
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *


def parse_args():
    parser = argparse.ArgumentParser(description="Demo")
    parser.add_argument("--cfg-path", type=str, default='eval_configs/minigpt4_eval.yaml',
                        help="path to configuration file.")
    parser.add_argument(
        "--options",
        nargs="+",
        help="override some settings in the used config, the key-value pair "
             "in xxx=yyy format will be merged into config file (deprecate), "
             "change to --cfg-options instead.",
    )
    args = parser.parse_args()
    return args


def setup_seeds(config):
    seed = config.run_cfg.seed + get_rank()

    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    cudnn.benchmark = False
    cudnn.deterministic = True


# ========================================
#             Model Initialization
# ========================================

SHARED_UI_WARNING = f'''### [NOTE] It is possible that you are waiting in a lengthy queue.
You can duplicate and use it with a paid private GPU.
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/Vision-CAIR/minigpt4?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a>
Alternatively, you can also use the demo on our [project page](https://minigpt-4.github.io).
'''

print('Initializing Chat')
cfg = Config(parse_args())

model_config = cfg.model_cfg
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:0')

vis_processor_cfg = cfg.datasets_cfg.cc_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor)
print('Initialization Finished')

# ========================================
#             Gradio Setting
# ========================================

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Replace "*" with your frontend domain
    allow_credentials=True,
    allow_methods=["GET", "POST"],
    allow_headers=["*"],
)


class Item(BaseModel):
    gr_img: UploadFile = File(..., description="Image file")
    text_input: str = None


chat_state = CONV_VISION.copy()
img_list = []
chatbot = []


@app.get("/")
async def root():
    return RedirectResponse(url="/docs")


@app.post("/upload_img/")
async def upload_img(
        file: UploadFile = File(...),
):
    pil_image = Image.open(io.BytesIO(await file.read()))
    chat.upload_img(pil_image, chat_state, img_list)
    return {"message": "image uploaded  successfully."}



@app.post("/process/")
async def process_item(prompts: List[str] = Form(...)):
    if not img_list:  # Check if img_list is empty or None
        raise HTTPException(status_code=400, detail="No images uploaded.")

    global chatbot
    responses = []

    for prompt in prompts:
        # Process each prompt individually
        chat.ask(prompt, chat_state)
        chatbot.append([prompt, None])
        llm_message = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=1, max_length=2000)[0]
        chatbot[-1][1] = llm_message
        responses.append({
            "prompt": prompt,
            "response": llm_message
        })

    return responses


@app.post("/reset/")
async def reset(

):
    global chat_state, img_list, chatbot  # Use global keyword to reassign
    img_list = []
    if chat_state is not None:
        chat_state.messages = []
    if img_list is not None:
        img_list = []
    if chatbot is not None:
        chatbot = []


if __name__ == "__main__":
    # Run the FastAPI app with Uvicorn
    uvicorn.run("main:app", host="0.0.0.0", port=7860)