File size: 12,240 Bytes
36173e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import warnings
from multiprocessing import Pool
import numpy as np
from scipy.spatial.distance import cosine as cos_distance
from fcd_torch import FCD as FCDMetric
from scipy.stats import wasserstein_distance

from moses.dataset import get_dataset, get_statistics
from moses.utils import mapper
from moses.utils import disable_rdkit_log, enable_rdkit_log
from .utils import compute_fragments, average_agg_tanimoto, \
    compute_scaffolds, fingerprints, \
    get_mol, canonic_smiles, mol_passes_filters, \
    logP, QED, SA, weight


def get_all_metrics(gen, k=None, n_jobs=1,
                    device='cpu', batch_size=512, pool=None,
                    test=None, test_scaffolds=None,
                    ptest=None, ptest_scaffolds=None,
                    train=None):
    """
    Computes all available metrics between test (scaffold test)
    and generated sets of SMILES.
    Parameters:
        gen: list of generated SMILES
        k: int or list with values for unique@k. Will calculate number of
            unique molecules in the first k molecules. Default [1000, 10000]
        n_jobs: number of workers for parallel processing
        device: 'cpu' or 'cuda:n', where n is GPU device number
        batch_size: batch size for FCD metric
        pool: optional multiprocessing pool to use for parallelization

        test (None or list): test SMILES. If None, will load
            a default test set
        test_scaffolds (None or list): scaffold test SMILES. If None, will
            load a default scaffold test set
        ptest (None or dict): precalculated statistics of the test set. If
            None, will load default test statistics. If you specified a custom
            test set, default test statistics will be ignored
        ptest_scaffolds (None or dict): precalculated statistics of the
            scaffold test set If None, will load default scaffold test
            statistics. If you specified a custom test set, default test
            statistics will be ignored
        train (None or list): train SMILES. If None, will load a default
            train set
    Available metrics:
        * %valid
        * %unique@k
        * Frechet ChemNet Distance (FCD)
        * Fragment similarity (Frag)
        * Scaffold similarity (Scaf)
        * Similarity to nearest neighbour (SNN)
        * Internal diversity (IntDiv)
        * Internal diversity 2: using square root of mean squared
            Tanimoto similarity (IntDiv2)
        * %passes filters (Filters)
        * Distribution difference for logP, SA, QED, weight
        * Novelty (molecules not present in train)
    """
    if test is None:
        if ptest is not None:
            raise ValueError(
                "You cannot specify custom test "
                "statistics for default test set")
        test = get_dataset('test')
        ptest = get_statistics('test')

    if test_scaffolds is None:
        if ptest_scaffolds is not None:
            raise ValueError(
                "You cannot specify custom scaffold test "
                "statistics for default scaffold test set")
        test_scaffolds = get_dataset('test_scaffolds')
        ptest_scaffolds = get_statistics('test_scaffolds')

    train = train or get_dataset('train')

    if k is None:
        k = [1000, 10000]
    disable_rdkit_log()
    metrics = {}
    close_pool = False
    if pool is None:
        if n_jobs != 1:
            pool = Pool(n_jobs)
            close_pool = True
        else:
            pool = 1
    metrics['valid'] = fraction_valid(gen, n_jobs=pool)
    gen = remove_invalid(gen, canonize=True)
    if not isinstance(k, (list, tuple)):
        k = [k]
    for _k in k:
        metrics['unique@{}'.format(_k)] = fraction_unique(gen, _k, pool)

    if ptest is None:
        ptest = compute_intermediate_statistics(test, n_jobs=n_jobs,
                                                device=device,
                                                batch_size=batch_size,
                                                pool=pool)
    if test_scaffolds is not None and ptest_scaffolds is None:
        ptest_scaffolds = compute_intermediate_statistics(
            test_scaffolds, n_jobs=n_jobs,
            device=device, batch_size=batch_size,
            pool=pool
        )
    mols = mapper(pool)(get_mol, gen)
    kwargs = {'n_jobs': pool, 'device': device, 'batch_size': batch_size}
    kwargs_fcd = {'n_jobs': n_jobs, 'device': device, 'batch_size': batch_size}
    metrics['FCD/Test'] = FCDMetric(**kwargs_fcd)(gen=gen, pref=ptest['FCD'])
    metrics['SNN/Test'] = SNNMetric(**kwargs)(gen=mols, pref=ptest['SNN'])
    metrics['Frag/Test'] = FragMetric(**kwargs)(gen=mols, pref=ptest['Frag'])
    metrics['Scaf/Test'] = ScafMetric(**kwargs)(gen=mols, pref=ptest['Scaf'])
    if ptest_scaffolds is not None:
        metrics['FCD/TestSF'] = FCDMetric(**kwargs_fcd)(
            gen=gen, pref=ptest_scaffolds['FCD']
        )
        metrics['SNN/TestSF'] = SNNMetric(**kwargs)(
            gen=mols, pref=ptest_scaffolds['SNN']
        )
        metrics['Frag/TestSF'] = FragMetric(**kwargs)(
            gen=mols, pref=ptest_scaffolds['Frag']
        )
        metrics['Scaf/TestSF'] = ScafMetric(**kwargs)(
            gen=mols, pref=ptest_scaffolds['Scaf']
        )

    metrics['IntDiv'] = internal_diversity(mols, pool, device=device)
    metrics['IntDiv2'] = internal_diversity(mols, pool, device=device, p=2)
    metrics['Filters'] = fraction_passes_filters(mols, pool)

    # Properties
    for name, func in [('logP', logP), ('SA', SA),
                       ('QED', QED),
                       ('weight', weight)]:
        metrics[name] = WassersteinMetric(func, **kwargs)(
            gen=mols, pref=ptest[name])

    if train is not None:
        metrics['Novelty'] = novelty(mols, train, pool)
    enable_rdkit_log()
    if close_pool:
        pool.close()
        pool.join()
    return metrics


def compute_intermediate_statistics(smiles, n_jobs=1, device='cpu',
                                    batch_size=512, pool=None):
    """
    The function precomputes statistics such as mean and variance for FCD, etc.
    It is useful to compute the statistics for test and scaffold test sets to
        speedup metrics calculation.
    """
    close_pool = False
    if pool is None:
        if n_jobs != 1:
            pool = Pool(n_jobs)
            close_pool = True
        else:
            pool = 1
    statistics = {}
    mols = mapper(pool)(get_mol, smiles)
    kwargs = {'n_jobs': pool, 'device': device, 'batch_size': batch_size}
    kwargs_fcd = {'n_jobs': n_jobs, 'device': device, 'batch_size': batch_size}
    statistics['FCD'] = FCDMetric(**kwargs_fcd).precalc(smiles)
    statistics['SNN'] = SNNMetric(**kwargs).precalc(mols)
    statistics['Frag'] = FragMetric(**kwargs).precalc(mols)
    statistics['Scaf'] = ScafMetric(**kwargs).precalc(mols)
    for name, func in [('logP', logP), ('SA', SA),
                       ('QED', QED),
                       ('weight', weight)]:
        statistics[name] = WassersteinMetric(func, **kwargs).precalc(mols)
    if close_pool:
        pool.terminate()
    return statistics


def fraction_passes_filters(gen, n_jobs=1):
    """
    Computes the fraction of molecules that pass filters:
    * MCF
    * PAINS
    * Only allowed atoms ('C','N','S','O','F','Cl','Br','H')
    * No charges
    """
    passes = mapper(n_jobs)(mol_passes_filters, gen)
    return np.mean(passes)


def internal_diversity(gen, n_jobs=1, device='cpu', fp_type='morgan',
                       gen_fps=None, p=1):
    """
    Computes internal diversity as:
    1/|A|^2 sum_{x, y in AxA} (1-tanimoto(x, y))
    """
    if gen_fps is None:
        gen_fps = fingerprints(gen, fp_type=fp_type, n_jobs=n_jobs)
    return 1 - (average_agg_tanimoto(gen_fps, gen_fps,
                                     agg='mean', device=device, p=p)).mean()


def fraction_unique(gen, k=None, n_jobs=1, check_validity=True):
    """
    Computes a number of unique molecules
    Parameters:
        gen: list of SMILES
        k: compute unique@k
        n_jobs: number of threads for calculation
        check_validity: raises ValueError if invalid molecules are present
    """
    if k is not None:
        if len(gen) < k:
            warnings.warn(
                "Can't compute unique@{}.".format(k) +
                "gen contains only {} molecules".format(len(gen))
            )
        gen = gen[:k]
    canonic = set(mapper(n_jobs)(canonic_smiles, gen))
    if None in canonic and check_validity:
        raise ValueError("Invalid molecule passed to unique@k")
    return len(canonic) / len(gen)


def fraction_valid(gen, n_jobs=1):
    """
    Computes a number of valid molecules
    Parameters:
        gen: list of SMILES
        n_jobs: number of threads for calculation
    """
    gen = mapper(n_jobs)(get_mol, gen)
    return 1 - gen.count(None) / len(gen)


def novelty(gen, train, n_jobs=1):
    gen_smiles = mapper(n_jobs)(canonic_smiles, gen)
    gen_smiles_set = set(gen_smiles) - {None}
    train_set = set(train)
    return len(gen_smiles_set - train_set) / len(gen_smiles_set)


def remove_invalid(gen, canonize=True, n_jobs=1):
    """
    Removes invalid molecules from the dataset
    """
    if not canonize:
        mols = mapper(n_jobs)(get_mol, gen)
        return [gen_ for gen_, mol in zip(gen, mols) if mol is not None]
    return [x for x in mapper(n_jobs)(canonic_smiles, gen) if
            x is not None]


class Metric:
    def __init__(self, n_jobs=1, device='cpu', batch_size=512, **kwargs):
        self.n_jobs = n_jobs
        self.device = device
        self.batch_size = batch_size
        for k, v in kwargs.values():
            setattr(self, k, v)

    def __call__(self, ref=None, gen=None, pref=None, pgen=None):
        assert (ref is None) != (pref is None), "specify ref xor pref"
        assert (gen is None) != (pgen is None), "specify gen xor pgen"
        if pref is None:
            pref = self.precalc(ref)
        if pgen is None:
            pgen = self.precalc(gen)
        return self.metric(pref, pgen)

    def precalc(self, moleclues):
        raise NotImplementedError

    def metric(self, pref, pgen):
        raise NotImplementedError


class SNNMetric(Metric):
    """
    Computes average max similarities of gen SMILES to ref SMILES
    """

    def __init__(self, fp_type='morgan', **kwargs):
        self.fp_type = fp_type
        super().__init__(**kwargs)

    def precalc(self, mols):
        return {'fps': fingerprints(mols, n_jobs=self.n_jobs,
                                    fp_type=self.fp_type)}

    def metric(self, pref, pgen):
        return average_agg_tanimoto(pref['fps'], pgen['fps'],
                                    device=self.device)


def cos_similarity(ref_counts, gen_counts):
    """
    Computes cosine similarity between
     dictionaries of form {name: count}. Non-present
     elements are considered zero:

     sim = <r, g> / ||r|| / ||g||
    """
    if len(ref_counts) == 0 or len(gen_counts) == 0:
        return np.nan
    keys = np.unique(list(ref_counts.keys()) + list(gen_counts.keys()))
    ref_vec = np.array([ref_counts.get(k, 0) for k in keys])
    gen_vec = np.array([gen_counts.get(k, 0) for k in keys])
    return 1 - cos_distance(ref_vec, gen_vec)


class FragMetric(Metric):
    def precalc(self, mols):
        return {'frag': compute_fragments(mols, n_jobs=self.n_jobs)}

    def metric(self, pref, pgen):
        return cos_similarity(pref['frag'], pgen['frag'])


class ScafMetric(Metric):
    def precalc(self, mols):
        return {'scaf': compute_scaffolds(mols, n_jobs=self.n_jobs)}

    def metric(self, pref, pgen):
        return cos_similarity(pref['scaf'], pgen['scaf'])


class WassersteinMetric(Metric):
    def __init__(self, func=None, **kwargs):
        self.func = func
        super().__init__(**kwargs)

    def precalc(self, mols):
        if self.func is not None:
            values = mapper(self.n_jobs)(self.func, mols)
        else:
            values = mols
        return {'values': values}

    def metric(self, pref, pgen):
        return wasserstein_distance(
            pref['values'], pgen['values']
        )