Spaces:
Running
Running
import streamlit as st | |
from transformers import pipeline | |
st.set_page_config(page_title="Text Summarisation", page_icon="🤖", layout="wide", initial_sidebar_state="expanded",) | |
st.title("Text Summarisation") | |
pipe = pipeline(task="summarization", model="facebook/bart-large-cnn") | |
text_value = st.text_area("Summarise the following") | |
if text_value: | |
out = pipe(text_value, max_length=int(len(text_value)/2), min_length=int(len(text_value)/3), do_sample=False) | |
if len(out) >= 1: | |
st.write(out[0]['summary_text']) | |
st.download_button("summary download", out[0]['summary_text'], file_name="summersation.txt", mime="text/plain") | |