Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,13 @@
|
|
1 |
-
# import sklearn
|
2 |
import gradio as gr
|
3 |
-
# import joblib
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
import lightgbm as lgb
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
from PIL import Image
|
9 |
-
# import datasets
|
10 |
-
|
11 |
-
# pipe = joblib.load("./model.pkl")
|
12 |
|
13 |
title = "RegMix"
|
14 |
description = "TBD."
|
15 |
|
16 |
-
df = pd.read_csv('data.csv')
|
17 |
-
headers = df.columns.tolist()
|
18 |
-
|
19 |
-
inputs = [gr.Dataframe(headers=headers, row_count = (8, "dynamic"), datatype='number', col_count=(4,"fixed"), label="Dataset", interactive=1)]
|
20 |
-
outputs = [gr.ScatterPlot(), gr.Image(), gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), datatype='number', label="Results", headers=["True Loss", "Pred Loss"])]
|
21 |
-
|
22 |
def infer(inputs):
|
23 |
df = pd.DataFrame(inputs, columns=headers)
|
24 |
|
@@ -177,5 +166,27 @@ def infer(inputs):
|
|
177 |
gr.Image(Image.open('tmp.png')),
|
178 |
df_val[['Target', 'Prediction']], ]
|
179 |
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import lightgbm as lgb
|
5 |
from sklearn.model_selection import train_test_split
|
6 |
from PIL import Image
|
|
|
|
|
|
|
7 |
|
8 |
title = "RegMix"
|
9 |
description = "TBD."
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def infer(inputs):
|
12 |
df = pd.DataFrame(inputs, columns=headers)
|
13 |
|
|
|
166 |
gr.Image(Image.open('tmp.png')),
|
167 |
df_val[['Target', 'Prediction']], ]
|
168 |
|
169 |
+
def display_csv(file):
|
170 |
+
df = pd.read_csv(file.name,
|
171 |
+
# encoding='utf-8'
|
172 |
+
)
|
173 |
+
# Return as formatted string
|
174 |
+
# print(df.head())
|
175 |
+
return df
|
176 |
+
|
177 |
+
df = pd.read_csv('data.csv')
|
178 |
+
headers = df.columns.tolist()
|
179 |
+
|
180 |
+
inputs = [gr.Dataframe(headers=headers, row_count = (8, "dynamic"), datatype='number', col_count=(4,"fixed"), label="Dataset", interactive=1)]
|
181 |
+
outputs = [gr.ScatterPlot(), gr.Image(), gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), datatype='number', label="Results", headers=["True Loss", "Pred Loss"])]
|
182 |
+
|
183 |
+
with gr.Blocks() as demo:
|
184 |
+
upload_button = gr.UploadButton(label="Upload", file_types = ['.csv'],
|
185 |
+
# live=True,
|
186 |
+
file_count = "single")
|
187 |
+
upload_button.upload(fn=display_csv, inputs=upload_button, outputs=inputs, api_name="upload_csv")
|
188 |
+
|
189 |
+
gr.Interface(infer, inputs=inputs, outputs=outputs, title = title,
|
190 |
+
description = description, examples=[df], cache_examples=False, allow_flagging='never')
|
191 |
+
|
192 |
+
demo.launch(debug=False)
|