Spaces:
Sleeping
Sleeping
File size: 3,721 Bytes
2321c66 0b76712 2321c66 d9bdbe2 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 d9bdbe2 2321c66 0b76712 2321c66 0b76712 2321c66 d9bdbe2 0b76712 c8b10d8 4fb1273 0b76712 c8b10d8 0b76712 2321c66 0b76712 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
import speech_recognition as sr
load_dotenv()
os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
def get_pdf_text(pdf_docs):
text=""
for pdf in pdf_docs:
pdf_reader= PdfReader(pdf)
for page in pdf_reader.pages:
text+= page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGoogleGenerativeAI(model="gemini-pro",
temperature=0.3)
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def user_input(user_question):
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
new_db = FAISS.load_local("faiss_index", embeddings)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain(
{"input_documents":docs, "question": user_question}
, return_only_outputs=True)
print(response)
st.write("Reply: ", response["output_text"])
def record_audio():
r = sr.Recognizer()
with sr.Microphone() as source:
st.write("Please speak your question...")
audio = r.listen(source)
try:
text = r.recognize_google(audio)
st.write("You said: " + text)
return text
except sr.UnknownValueError:
st.error("Could not understand audio")
return None
except sr.RequestError as e:
st.error(f"Could not request results; {e}")
return None
def main():
st.set_page_config("Chat PDF")
st.header("Chat with PDF using Gemini💁")
with st.sidebar:
st.title("Menu:")
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks)
st.success("Done")
# User can choose to input question via text or voice
user_question = st.text_input("Ask a Question from the PDF Files")
if st.button("Record Question via Microphone"):
user_question = record_audio()
if user_question:
user_input(user_question)
if __name__ == "__main__":
main() |