Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +98 -0
- requirements.txt +8 -0
- streaming.py +11 -0
- utils.py +55 -0
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import utils
|
3 |
+
import streamlit as st
|
4 |
+
from streaming import StreamHandler
|
5 |
+
|
6 |
+
from langchain.chat_models import ChatOpenAI
|
7 |
+
from langchain.document_loaders import PyPDFLoader
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
+
from langchain.chains import ConversationalRetrievalChain
|
11 |
+
from langchain.vectorstores import DocArrayInMemorySearch
|
12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
+
from langchain.embeddings import OpenAIEmbeddings
|
14 |
+
|
15 |
+
st.header('Chatbot for AEO ')
|
16 |
+
st.write('Please upload the necessary files about AEO in the sidebar and ask questions in the chat.')
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
class CustomDataChatbot:
|
22 |
+
|
23 |
+
def __init__(self):
|
24 |
+
self.oepn_ai_key = utils.configure_openai_api_key()
|
25 |
+
self.openai_model = "gpt-3.5-turbo"
|
26 |
+
|
27 |
+
def save_file(self, file):
|
28 |
+
folder = 'tmp'
|
29 |
+
if not os.path.exists(folder):
|
30 |
+
os.makedirs(folder)
|
31 |
+
|
32 |
+
file_path = f'./{folder}/{file.name}'
|
33 |
+
with open(file_path, 'wb') as f:
|
34 |
+
f.write(file.getvalue())
|
35 |
+
return file_path
|
36 |
+
|
37 |
+
@st.spinner('Analyzing documents..')
|
38 |
+
def setup_qa_chain(self, uploaded_files):
|
39 |
+
# Load documents
|
40 |
+
docs = []
|
41 |
+
for file in uploaded_files:
|
42 |
+
file_path = self.save_file(file)
|
43 |
+
loader = PyPDFLoader(file_path)
|
44 |
+
docs.extend(loader.load())
|
45 |
+
|
46 |
+
# Split documents
|
47 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
48 |
+
chunk_size=1500,
|
49 |
+
chunk_overlap=200
|
50 |
+
)
|
51 |
+
splits = text_splitter.split_documents(docs)
|
52 |
+
|
53 |
+
# Create embeddings and store in vectordb
|
54 |
+
|
55 |
+
embeddings = OpenAIEmbeddings(openai_api_key = self.oepn_ai_key)
|
56 |
+
vectordb = DocArrayInMemorySearch.from_documents(splits, embeddings)
|
57 |
+
|
58 |
+
# Define retriever
|
59 |
+
retriever = vectordb.as_retriever(
|
60 |
+
search_type='mmr',
|
61 |
+
search_kwargs={'k':2, 'fetch_k':4}
|
62 |
+
)
|
63 |
+
|
64 |
+
# Setup memory for contextual conversation
|
65 |
+
memory = ConversationBufferMemory(
|
66 |
+
memory_key='chat_history',
|
67 |
+
return_messages=True
|
68 |
+
)
|
69 |
+
|
70 |
+
# Setup LLM and QA chain
|
71 |
+
llm = ChatOpenAI(model_name=self.openai_model, temperature=0, streaming=True)
|
72 |
+
qa_chain = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, memory=memory, verbose=True)
|
73 |
+
return qa_chain
|
74 |
+
|
75 |
+
@utils.enable_chat_history
|
76 |
+
def main(self):
|
77 |
+
|
78 |
+
# User Inputs
|
79 |
+
uploaded_files = st.sidebar.file_uploader(label='Upload PDF files', type=['pdf'], accept_multiple_files=True)
|
80 |
+
if not uploaded_files:
|
81 |
+
st.error("Please upload PDF documents to continue!")
|
82 |
+
st.stop()
|
83 |
+
|
84 |
+
user_query = st.chat_input(placeholder="Ask me anything!")
|
85 |
+
|
86 |
+
if uploaded_files and user_query:
|
87 |
+
qa_chain = self.setup_qa_chain(uploaded_files)
|
88 |
+
|
89 |
+
utils.display_msg(user_query, 'user')
|
90 |
+
|
91 |
+
with st.chat_message("assistant"):
|
92 |
+
st_cb = StreamHandler(st.empty())
|
93 |
+
response = qa_chain.run(user_query, callbacks=[st_cb])
|
94 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
obj = CustomDataChatbot()
|
98 |
+
obj.main()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain==0.0.228
|
2 |
+
openai==0.27.8
|
3 |
+
streamlit==1.24.0
|
4 |
+
duckduckgo-search==3.8.3
|
5 |
+
pypdf==3.12.0
|
6 |
+
sentence-transformers==2.2.2
|
7 |
+
docarray==0.32.1
|
8 |
+
tiktoken
|
streaming.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
2 |
+
|
3 |
+
class StreamHandler(BaseCallbackHandler):
|
4 |
+
|
5 |
+
def __init__(self, container, initial_text=""):
|
6 |
+
self.container = container
|
7 |
+
self.text = initial_text
|
8 |
+
|
9 |
+
def on_llm_new_token(self, token: str, **kwargs):
|
10 |
+
self.text += token
|
11 |
+
self.container.markdown(self.text)
|
utils.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
#decorator
|
6 |
+
def enable_chat_history(func):
|
7 |
+
if os.environ.get("OPENAI_API_KEY"):
|
8 |
+
|
9 |
+
# to clear chat history after swtching chatbot
|
10 |
+
current_page = func.__qualname__
|
11 |
+
if "current_page" not in st.session_state:
|
12 |
+
st.session_state["current_page"] = current_page
|
13 |
+
if st.session_state["current_page"] != current_page:
|
14 |
+
try:
|
15 |
+
st.cache_resource.clear()
|
16 |
+
del st.session_state["current_page"]
|
17 |
+
del st.session_state["messages"]
|
18 |
+
except:
|
19 |
+
pass
|
20 |
+
|
21 |
+
# to show chat history on ui
|
22 |
+
if "messages" not in st.session_state:
|
23 |
+
st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]
|
24 |
+
for msg in st.session_state["messages"]:
|
25 |
+
st.chat_message(msg["role"]).write(msg["content"])
|
26 |
+
|
27 |
+
def execute(*args, **kwargs):
|
28 |
+
func(*args, **kwargs)
|
29 |
+
return execute
|
30 |
+
|
31 |
+
def display_msg(msg, author):
|
32 |
+
"""Method to display message on the UI
|
33 |
+
|
34 |
+
Args:
|
35 |
+
msg (str): message to display
|
36 |
+
author (str): author of the message -user/assistant
|
37 |
+
"""
|
38 |
+
st.session_state.messages.append({"role": author, "content": msg})
|
39 |
+
st.chat_message(author).write(msg)
|
40 |
+
|
41 |
+
def configure_openai_api_key():
|
42 |
+
openai_api_key = st.sidebar.text_input(
|
43 |
+
label="OpenAI API Key",
|
44 |
+
type="password",
|
45 |
+
value=st.session_state['OPENAI_API_KEY'] if 'OPENAI_API_KEY' in st.session_state else '',
|
46 |
+
placeholder="sk-..."
|
47 |
+
)
|
48 |
+
if openai_api_key:
|
49 |
+
st.session_state['OPENAI_API_KEY'] = openai_api_key
|
50 |
+
os.environ['OPENAI_API_KEY'] = openai_api_key
|
51 |
+
else:
|
52 |
+
st.error("Please add your OpenAI API key to continue.")
|
53 |
+
st.info("Obtain your key from this link: https://platform.openai.com/account/api-keys")
|
54 |
+
st.stop()
|
55 |
+
return openai_api_key
|