aeo_v2 / lureGeneration /LureGenerator.py
ibibek's picture
Upload 32 files
50cb8a1
raw
history blame
5.4 kB
import os
import openai
import json
import rdflib
class LureObject:
def __init__(self):
self.lure_name = ""
self.type = "" #honeytoken, honeypot
self.content = ""
class LureGenerator:
def __init__(self):
self.lure = []
def ChatGPTTextSplitter(self,text):
"""Splits text in smaller subblocks to feed to the LLM"""
prompt = f"""The total length of content that I want to send you is too large to send in only one piece.
For sending you that content, I will follow this rule:
[START PART 1/10]
this is the content of the part 1 out of 10 in total
[END PART 1/10]
Then you just answer: "Instructions Sent."
And when I tell you "ALL PARTS SENT", then you can continue processing the data and answering my requests.
"""
if type(text) == str:
textsize = 12000
blocksize = int(len(text) / textsize)
if blocksize > 0:
yield prompt
for b in range(1,blocksize+1):
if b < blocksize+1:
prompt = f"""Do not answer yet. This is just another part of the text I want to send you. Just receive and acknowledge as "Part {b}/{blocksize} received" and wait for the next part.
[START PART {b}/{blocksize}]
{text[(b-1)*textsize:b*textsize]}
[END PART {b}/{blocksize}]
Remember not answering yet. Just acknowledge you received this part with the message "Part {b}/{blocksize} received" and wait for the next part.
"""
yield prompt
else:
prompt = f"""
[START PART {b}/{blocksize}]
{text[(b-1)*textsize:b*textsize]}
[END PART {b}/{blocksize}]
ALL PARTS SENT. Now you can continue processing the request.
"""
yield prompt
else:
yield text
elif type(text) == list:
yield prompt
for n,block in enumerate(text):
if n+1 < len(text):
prompt = f"""Do not answer yet. This is just another part of the text I want to send you. Just receive and acknowledge as "Part {n+1}/{len(text)} received" and wait for the next part.
[START PART {n+1}/{len(text)}]
{text[n]}
[END PART {n+1}/{len(text)}]
Remember not answering yet. Just acknowledge you received this part with the message "Part {n+1}/{len(text)} received" and wait for the next part.
"""
yield prompt
else:
prompt = f"""
[START PART {n+1}/{len(text)}]
{text[n]}
[END PART {n+1}/{len(text)}]
ALL PARTS SENT. Now you can continue processing the request.
"""
yield prompt
def llm_api(self,prompt,model="gpt-3.5-turbo"):
messages = [{
"role":"user",
"content":prompt
}]
res = openai.ChatCompletion.create(model=model,messages=messages,temperature=0)
return res.choices[0].message['content']
def generate_rule(self,deceptionObject,role):
v = f"""Generate examples of {deceptionObject} that would be perceived valuable by an adversary about a person who has the role {role} and lure them to a specific location on the network. Generate json-format objects from the examples and return a json-format object containing all json-format objects.
"""
return v
def generate_rule2(self,deceptionObject,role,jsn):
v = f"""Generate the detailed contents of an example of what an adversary would see if they accessed this {deceptionObject}: {jsn}
"""
return v
def generate_continue(self):
v = """
continue
"""
return v
def raw_prompt(self,LureType,Role):
def run(val):
prompt = "".join(val)
for i in self.ChatGPTTextSplitter(prompt):
res = self.llm_api(i)
return res
res_val = run(self.generate_rule(LureType,Role))
return res_val
def raw_content(self,LureType,Role,jsn):
def run(val):
prompt = "".join(val)
for i in self.ChatGPTTextSplitter(prompt):
res = self.llm_api(i)
return res
res_val = run(self.generate_rule2(LureType,Role,jsn))
return res_val
def generate(self,LureType,Role:str = ""):
assert LureType in ['honeytoken','honeypot','honeyfile']
res = self.raw_prompt(LureType,Role)
self.sketch = res
try:
jsn = json.loads(res)
except:
raise ValueError("Failed to parse json-format.")
key = list(jsn.keys())
if len(key) == 1:
for n,example in enumerate(list(jsn[key[0]])):
lure = LureObject()
lure.json = example
lure.lure_name = key[0]+"_"+str(n)
lure.content = self.raw_content(LureType,Role,example)
lure.type = LureType
lure.userRole = Role
self.lure.append(lure)
return self.lure