Spaces:
Runtime error
Runtime error
import subprocess | |
subprocess.run(["pip", "install","gradio","torch","transformers"]) | |
import re | |
import gradio as gr | |
import torch | |
import transformers | |
import json | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Define a function for generating text based on a prompt using the fine-tuned GPT-2 model and the tokenizer | |
def generate_text(prompt, length=100, theme=None, **kwargs): | |
model_url = "https://huggingface.co/spaces/sailormars18/Yelp-reviews-usingGPT2/blob/main/pytorch_model.bin" | |
config_url = "https://huggingface.co/spaces/sailormars18/Yelp-reviews-usingGPT2/blob/main/config.json" | |
generation_config_url = "https://huggingface.co/spaces/sailormars18/Yelp-reviews-usingGPT2/blob/main/generation_config.json" | |
# Load the model from the Hugging Face space | |
model = transformers.GPT2LMHeadModel.from_pretrained(model_url).to(device) | |
# Load the tokenizer from the Hugging Face space | |
tokenizer = transformers.GPT2Tokenizer.from_pretrained(config_url) | |
# If a theme is specified, add it to the prompt as a prefix for a special token | |
if theme: | |
prompt = f"<{theme.strip()}> {prompt.strip()}" | |
# Encode the input prompt | |
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device) | |
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=device) | |
pad_token_id = tokenizer.eos_token_id | |
# Set the max length of the generated text based on the input parameter | |
max_length = length if length > 0 else 100 | |
# Generate the text using the model | |
sample_outputs = model.generate( | |
input_ids, | |
attention_mask=attention_mask, | |
pad_token_id=pad_token_id, | |
do_sample=True, | |
max_length=max_length, | |
top_k=50, | |
top_p=0.95, | |
temperature=0.8, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
repetition_penalty=1.5, | |
) | |
# Decode the generated text | |
generated_text = tokenizer.decode(sample_outputs[0], skip_special_tokens=True) | |
# Postprocessing of the generated text | |
generated_text = generated_text.strip().strip('"') # Remove leading and trailing whitespace, remove any leading and trailing quotation marks | |
generated_text = re.sub(r'<([^>]+)>', '', generated_text) # Find the special token in the generated text and remove it | |
generated_text = re.sub(r'^\d+|^"', '', generated_text) # Remove any leading numeric characters and quotation marks | |
generated_text = generated_text.replace('\n', '') # Remove any newline characters from the generated text | |
generated_text = re.sub(r'[^\w\s]+', '', generated_text) # Remove any other unwanted special characters | |
generated_text = generated_text.capitalize() | |
return generated_text | |
# Define a Gradio interface for the generate_text function | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
"text", | |
gr.inputs.Slider(minimum=10, maximum=100, default=50, label='Length of text'), | |
gr.inputs.Textbox(default='Food', label='Theme') | |
], | |
outputs=[gr.outputs.Textbox(label='Generated Text')], | |
title='Yelp Review Generator', | |
description='Generate a Yelp review based on a prompt, length of text, and theme.', | |
examples=[ | |
['I had a great experience at this restaurant.', 50, 'Service'], | |
['The service was terrible and the food was cold.', 50, 'Atmosphere'], | |
['The food was delicious but the service was slow.', 50, 'Food'], | |
['The ambiance was amazing and the staff was friendly.', 75, 'Service'], | |
['The waitstaff was knowledgeable and attentive, but the noise level was a bit high.', 75, 'Atmosphere'], | |
['The menu had a good variety of options, but the portion sizes were a bit small for the price.', 75, 'Food'] | |
], | |
allow_flagging="manual", | |
flagging_options=[("π", "positive"), ("π", "negative")], | |
) | |
iface.launch(debug=False, share=True) |