Spaces:
Runtime error
Runtime error
Commit
·
7392d2f
1
Parent(s):
782b6ae
Delete nlpapp_4900.py
Browse files- nlpapp_4900.py +0 -216
nlpapp_4900.py
DELETED
@@ -1,216 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""nlpapp_4900.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1QE4TN1ipB5SwIVy2a7D6_bTPujHMBoDu
|
8 |
-
"""
|
9 |
-
|
10 |
-
# Import required modules for auto-reconnecting to the Colab runtime
|
11 |
-
# Set up auto-reconnect
|
12 |
-
import IPython
|
13 |
-
from google.colab import output
|
14 |
-
|
15 |
-
# Configure the JS code to automatically reconnect
|
16 |
-
def restart_runtime():
|
17 |
-
output.clear()
|
18 |
-
print('Restarting runtime...')
|
19 |
-
display(IPython.display.Javascript('''
|
20 |
-
const outputArea = this;
|
21 |
-
const kernel = IPython.notebook.kernel;
|
22 |
-
const command = 'notebook_utils.restart_runtime()';
|
23 |
-
kernel.execute(command).then(() => {
|
24 |
-
outputArea.clear_output();
|
25 |
-
console.log('Runtime restarted. Running all cells...');
|
26 |
-
IPython.notebook.execute_all_cells();
|
27 |
-
});
|
28 |
-
'''))
|
29 |
-
|
30 |
-
# Set the number of minutes of inactivity before auto-reconnecting
|
31 |
-
|
32 |
-
minutes = 30 #@param {type: "slider", min: 1, max: 180, step: 1} # define a slider widget to set the time before auto-reconnecting
|
33 |
-
|
34 |
-
# Register the auto-reconnect function
|
35 |
-
import time
|
36 |
-
def auto_reconnect():
|
37 |
-
while True:
|
38 |
-
print(f'Auto-reconnect in {minutes} minute(s)...')
|
39 |
-
time.sleep(minutes * 60 - 5) # Subtract 5 seconds to give the reconnect JS code time to run
|
40 |
-
restart_runtime()
|
41 |
-
|
42 |
-
# Start the auto-reconnect loop in the background
|
43 |
-
import threading
|
44 |
-
auto_reconnect_thread = threading.Thread(target=auto_reconnect)
|
45 |
-
auto_reconnect_thread.start()
|
46 |
-
|
47 |
-
!pip install transformers torch gradio
|
48 |
-
|
49 |
-
# Download and extract the Yelp review dataset: download and extract the dataset using wget and tar
|
50 |
-
!wget https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polarity_csv.tgz
|
51 |
-
!tar -xvzf yelp_review_polarity_csv.tgz
|
52 |
-
|
53 |
-
import pandas as pd
|
54 |
-
|
55 |
-
train_df = pd.read_csv('yelp_review_polarity_csv/train.csv', header=None, names=['label', 'text'])
|
56 |
-
test_df = pd.read_csv('yelp_review_polarity_csv/test.csv', header=None, names=['label', 'text'])
|
57 |
-
|
58 |
-
import re
|
59 |
-
|
60 |
-
# Define a function for removing HTML tags, URLs, and extra spaces, and converting the text to lowercase
|
61 |
-
def preprocess_text(text):
|
62 |
-
# remove HTML tags
|
63 |
-
text = re.sub('<[^<]+?>', '', text)
|
64 |
-
# remove URLs
|
65 |
-
text = re.sub(r'http\S+', '', text)
|
66 |
-
# remove extra spaces
|
67 |
-
text = re.sub(r' +', ' ', text)
|
68 |
-
return text.strip().lower()
|
69 |
-
|
70 |
-
# Apply the preprocessing function to the 'text' column of the training and test datasets
|
71 |
-
train_df['text'] = train_df['text'].apply(preprocess_text)
|
72 |
-
test_df['text'] = test_df['text'].apply(preprocess_text)
|
73 |
-
|
74 |
-
import torch
|
75 |
-
import transformers
|
76 |
-
import gradio as gr
|
77 |
-
from transformers import TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments
|
78 |
-
|
79 |
-
# Instantiate the tokenizer and the GPT-2 language model from the transformers library, and set the device to CUDA if available, otherwise to CPU
|
80 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
81 |
-
|
82 |
-
tokenizer = transformers.GPT2Tokenizer.from_pretrained('gpt2')
|
83 |
-
model = transformers.GPT2LMHeadModel.from_pretrained('gpt2').to(device)
|
84 |
-
|
85 |
-
# Fine-tune the model on Yelp review dataset
|
86 |
-
train_dataset = TextDataset(
|
87 |
-
tokenizer=tokenizer,
|
88 |
-
file_path='yelp_review_polarity_csv/train.csv',
|
89 |
-
block_size=128,
|
90 |
-
)
|
91 |
-
test_dataset = TextDataset(
|
92 |
-
tokenizer=tokenizer,
|
93 |
-
file_path='yelp_review_polarity_csv/test.csv',
|
94 |
-
block_size=128,
|
95 |
-
)
|
96 |
-
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
97 |
-
|
98 |
-
# Define the training arguments, instantiate the Trainer class from the transformers library, and train the model
|
99 |
-
training_args = TrainingArguments(
|
100 |
-
output_dir='./results',
|
101 |
-
evaluation_strategy='steps',
|
102 |
-
eval_steps=1000,
|
103 |
-
save_steps=1000,
|
104 |
-
save_total_limit=5,
|
105 |
-
logging_steps=100,
|
106 |
-
logging_dir='./logs',
|
107 |
-
num_train_epochs=3,
|
108 |
-
per_device_train_batch_size=16,
|
109 |
-
per_device_eval_batch_size=32,
|
110 |
-
learning_rate=1e-4,
|
111 |
-
weight_decay=0.01,
|
112 |
-
gradient_accumulation_steps=2,
|
113 |
-
push_to_hub=False,
|
114 |
-
max_steps=10000, # set a fixed number of training steps
|
115 |
-
# save model checkpoints at specified intervals
|
116 |
-
save_strategy="steps",
|
117 |
-
)
|
118 |
-
|
119 |
-
trainer = Trainer(
|
120 |
-
model=model,
|
121 |
-
args=training_args,
|
122 |
-
train_dataset=train_dataset,
|
123 |
-
data_collator=data_collator,
|
124 |
-
eval_dataset=test_dataset,
|
125 |
-
)
|
126 |
-
trainer.train()
|
127 |
-
trainer.save_model('./gpt2_yelp_review')
|
128 |
-
|
129 |
-
# Evaluate the model on the test dataset and print the perplexity score
|
130 |
-
eval_results = trainer.evaluate(eval_dataset=test_dataset)
|
131 |
-
print(f"Perplexity: {eval_results['eval_loss']}")
|
132 |
-
|
133 |
-
import pandas as pd
|
134 |
-
import gradio as gr
|
135 |
-
import re
|
136 |
-
import torch
|
137 |
-
import transformers
|
138 |
-
|
139 |
-
# Define a function for generating text based on a prompt using the fine-tuned GPT-2 model and the tokenizer
|
140 |
-
def generate_text(prompt, length=100, theme=None, **kwargs):
|
141 |
-
model = transformers.GPT2LMHeadModel.from_pretrained('./gpt2_yelp_review').to(device)
|
142 |
-
tokenizer = transformers.GPT2Tokenizer.from_pretrained('gpt2')
|
143 |
-
|
144 |
-
# If a theme is specified, add it to the prompt as a prefix for a special token
|
145 |
-
if theme:
|
146 |
-
prompt = ' <{}> '.format(theme.strip()) + prompt.strip()
|
147 |
-
|
148 |
-
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
149 |
-
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=device)
|
150 |
-
pad_token_id = tokenizer.eos_token_id
|
151 |
-
|
152 |
-
# Set the max length of the generated text based on the input parameter
|
153 |
-
max_length = length if length > 0 else 100
|
154 |
-
|
155 |
-
sample_outputs = model.generate(
|
156 |
-
input_ids,
|
157 |
-
attention_mask=attention_mask,
|
158 |
-
pad_token_id=pad_token_id,
|
159 |
-
do_sample=True,
|
160 |
-
max_length=max_length,
|
161 |
-
top_k=50,
|
162 |
-
top_p=0.95,
|
163 |
-
temperature=0.8,
|
164 |
-
num_return_sequences=1,
|
165 |
-
no_repeat_ngram_size=2,
|
166 |
-
repetition_penalty=1.5,
|
167 |
-
)
|
168 |
-
generated_text = tokenizer.decode(sample_outputs[0], skip_special_tokens=True)
|
169 |
-
|
170 |
-
# Post preprocessing of the generated text
|
171 |
-
|
172 |
-
# Remove any leading and trailing quotation marks
|
173 |
-
generated_text = generated_text.strip('"')
|
174 |
-
|
175 |
-
# Remove leading and trailing whitespace
|
176 |
-
generated_text = generated_text.strip()
|
177 |
-
|
178 |
-
# Find the special token in the generated text and remove it
|
179 |
-
match = re.search(r'<([^>]+)>', generated_text)
|
180 |
-
if match:
|
181 |
-
generated_text = generated_text[:match.start()] + generated_text[match.end():]
|
182 |
-
|
183 |
-
# Remove any leading numeric characters and quotation marks
|
184 |
-
generated_text = re.sub(r'^\d+', '', generated_text)
|
185 |
-
generated_text = re.sub(r'^"', '', generated_text)
|
186 |
-
|
187 |
-
# Remove any newline characters from the generated text
|
188 |
-
generated_text = generated_text.replace('\n', '')
|
189 |
-
|
190 |
-
# Remove any other unwanted special characters
|
191 |
-
generated_text = re.sub(r'[^\w\s]+', '', generated_text)
|
192 |
-
|
193 |
-
return generated_text.strip().capitalize()
|
194 |
-
|
195 |
-
# Define a Gradio interface for the generate_text function, allowing users to input a prompt and generate text based on it
|
196 |
-
iface = gr.Interface(
|
197 |
-
fn=generate_text,
|
198 |
-
inputs=['text', gr.inputs.Slider(minimum=10, maximum=100, default=50, label='Length of text'),
|
199 |
-
gr.inputs.Textbox(default='Food', label='Theme')],
|
200 |
-
outputs=[gr.outputs.Textbox(label='Generated Text')],
|
201 |
-
title='Yelp Review Generator',
|
202 |
-
description='Generate a Yelp review based on a prompt, length of text, and theme.',
|
203 |
-
examples=[
|
204 |
-
['I had a great experience at this restaurant.', 50, 'Service'],
|
205 |
-
['The service was terrible and the food was cold.', 50, 'Atmosphere'],
|
206 |
-
['The food was delicious but the service was slow.', 50, 'Food'],
|
207 |
-
['The ambiance was amazing and the staff was friendly.', 75, 'Service'],
|
208 |
-
['The waitstaff was knowledgeable and attentive, but the noise level was a bit high.', 75, 'Atmosphere'],
|
209 |
-
['The menu had a good variety of options, but the portion sizes were a bit small for the price.', 75, 'Food']
|
210 |
-
],
|
211 |
-
allow_flagging="manual",
|
212 |
-
flagging_options=[("🙌", "positive"), ("😞", "negative")],
|
213 |
-
)
|
214 |
-
|
215 |
-
iface.launch(debug=False, share=True)
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|