sailormars18 commited on
Commit
7392d2f
·
1 Parent(s): 782b6ae

Delete nlpapp_4900.py

Browse files
Files changed (1) hide show
  1. nlpapp_4900.py +0 -216
nlpapp_4900.py DELETED
@@ -1,216 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """nlpapp_4900.ipynb
3
-
4
- Automatically generated by Colaboratory.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1QE4TN1ipB5SwIVy2a7D6_bTPujHMBoDu
8
- """
9
-
10
- # Import required modules for auto-reconnecting to the Colab runtime
11
- # Set up auto-reconnect
12
- import IPython
13
- from google.colab import output
14
-
15
- # Configure the JS code to automatically reconnect
16
- def restart_runtime():
17
- output.clear()
18
- print('Restarting runtime...')
19
- display(IPython.display.Javascript('''
20
- const outputArea = this;
21
- const kernel = IPython.notebook.kernel;
22
- const command = 'notebook_utils.restart_runtime()';
23
- kernel.execute(command).then(() => {
24
- outputArea.clear_output();
25
- console.log('Runtime restarted. Running all cells...');
26
- IPython.notebook.execute_all_cells();
27
- });
28
- '''))
29
-
30
- # Set the number of minutes of inactivity before auto-reconnecting
31
-
32
- minutes = 30 #@param {type: "slider", min: 1, max: 180, step: 1} # define a slider widget to set the time before auto-reconnecting
33
-
34
- # Register the auto-reconnect function
35
- import time
36
- def auto_reconnect():
37
- while True:
38
- print(f'Auto-reconnect in {minutes} minute(s)...')
39
- time.sleep(minutes * 60 - 5) # Subtract 5 seconds to give the reconnect JS code time to run
40
- restart_runtime()
41
-
42
- # Start the auto-reconnect loop in the background
43
- import threading
44
- auto_reconnect_thread = threading.Thread(target=auto_reconnect)
45
- auto_reconnect_thread.start()
46
-
47
- !pip install transformers torch gradio
48
-
49
- # Download and extract the Yelp review dataset: download and extract the dataset using wget and tar
50
- !wget https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polarity_csv.tgz
51
- !tar -xvzf yelp_review_polarity_csv.tgz
52
-
53
- import pandas as pd
54
-
55
- train_df = pd.read_csv('yelp_review_polarity_csv/train.csv', header=None, names=['label', 'text'])
56
- test_df = pd.read_csv('yelp_review_polarity_csv/test.csv', header=None, names=['label', 'text'])
57
-
58
- import re
59
-
60
- # Define a function for removing HTML tags, URLs, and extra spaces, and converting the text to lowercase
61
- def preprocess_text(text):
62
- # remove HTML tags
63
- text = re.sub('<[^<]+?>', '', text)
64
- # remove URLs
65
- text = re.sub(r'http\S+', '', text)
66
- # remove extra spaces
67
- text = re.sub(r' +', ' ', text)
68
- return text.strip().lower()
69
-
70
- # Apply the preprocessing function to the 'text' column of the training and test datasets
71
- train_df['text'] = train_df['text'].apply(preprocess_text)
72
- test_df['text'] = test_df['text'].apply(preprocess_text)
73
-
74
- import torch
75
- import transformers
76
- import gradio as gr
77
- from transformers import TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments
78
-
79
- # Instantiate the tokenizer and the GPT-2 language model from the transformers library, and set the device to CUDA if available, otherwise to CPU
80
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
81
-
82
- tokenizer = transformers.GPT2Tokenizer.from_pretrained('gpt2')
83
- model = transformers.GPT2LMHeadModel.from_pretrained('gpt2').to(device)
84
-
85
- # Fine-tune the model on Yelp review dataset
86
- train_dataset = TextDataset(
87
- tokenizer=tokenizer,
88
- file_path='yelp_review_polarity_csv/train.csv',
89
- block_size=128,
90
- )
91
- test_dataset = TextDataset(
92
- tokenizer=tokenizer,
93
- file_path='yelp_review_polarity_csv/test.csv',
94
- block_size=128,
95
- )
96
- data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
97
-
98
- # Define the training arguments, instantiate the Trainer class from the transformers library, and train the model
99
- training_args = TrainingArguments(
100
- output_dir='./results',
101
- evaluation_strategy='steps',
102
- eval_steps=1000,
103
- save_steps=1000,
104
- save_total_limit=5,
105
- logging_steps=100,
106
- logging_dir='./logs',
107
- num_train_epochs=3,
108
- per_device_train_batch_size=16,
109
- per_device_eval_batch_size=32,
110
- learning_rate=1e-4,
111
- weight_decay=0.01,
112
- gradient_accumulation_steps=2,
113
- push_to_hub=False,
114
- max_steps=10000, # set a fixed number of training steps
115
- # save model checkpoints at specified intervals
116
- save_strategy="steps",
117
- )
118
-
119
- trainer = Trainer(
120
- model=model,
121
- args=training_args,
122
- train_dataset=train_dataset,
123
- data_collator=data_collator,
124
- eval_dataset=test_dataset,
125
- )
126
- trainer.train()
127
- trainer.save_model('./gpt2_yelp_review')
128
-
129
- # Evaluate the model on the test dataset and print the perplexity score
130
- eval_results = trainer.evaluate(eval_dataset=test_dataset)
131
- print(f"Perplexity: {eval_results['eval_loss']}")
132
-
133
- import pandas as pd
134
- import gradio as gr
135
- import re
136
- import torch
137
- import transformers
138
-
139
- # Define a function for generating text based on a prompt using the fine-tuned GPT-2 model and the tokenizer
140
- def generate_text(prompt, length=100, theme=None, **kwargs):
141
- model = transformers.GPT2LMHeadModel.from_pretrained('./gpt2_yelp_review').to(device)
142
- tokenizer = transformers.GPT2Tokenizer.from_pretrained('gpt2')
143
-
144
- # If a theme is specified, add it to the prompt as a prefix for a special token
145
- if theme:
146
- prompt = ' <{}> '.format(theme.strip()) + prompt.strip()
147
-
148
- input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
149
- attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=device)
150
- pad_token_id = tokenizer.eos_token_id
151
-
152
- # Set the max length of the generated text based on the input parameter
153
- max_length = length if length > 0 else 100
154
-
155
- sample_outputs = model.generate(
156
- input_ids,
157
- attention_mask=attention_mask,
158
- pad_token_id=pad_token_id,
159
- do_sample=True,
160
- max_length=max_length,
161
- top_k=50,
162
- top_p=0.95,
163
- temperature=0.8,
164
- num_return_sequences=1,
165
- no_repeat_ngram_size=2,
166
- repetition_penalty=1.5,
167
- )
168
- generated_text = tokenizer.decode(sample_outputs[0], skip_special_tokens=True)
169
-
170
- # Post preprocessing of the generated text
171
-
172
- # Remove any leading and trailing quotation marks
173
- generated_text = generated_text.strip('"')
174
-
175
- # Remove leading and trailing whitespace
176
- generated_text = generated_text.strip()
177
-
178
- # Find the special token in the generated text and remove it
179
- match = re.search(r'<([^>]+)>', generated_text)
180
- if match:
181
- generated_text = generated_text[:match.start()] + generated_text[match.end():]
182
-
183
- # Remove any leading numeric characters and quotation marks
184
- generated_text = re.sub(r'^\d+', '', generated_text)
185
- generated_text = re.sub(r'^"', '', generated_text)
186
-
187
- # Remove any newline characters from the generated text
188
- generated_text = generated_text.replace('\n', '')
189
-
190
- # Remove any other unwanted special characters
191
- generated_text = re.sub(r'[^\w\s]+', '', generated_text)
192
-
193
- return generated_text.strip().capitalize()
194
-
195
- # Define a Gradio interface for the generate_text function, allowing users to input a prompt and generate text based on it
196
- iface = gr.Interface(
197
- fn=generate_text,
198
- inputs=['text', gr.inputs.Slider(minimum=10, maximum=100, default=50, label='Length of text'),
199
- gr.inputs.Textbox(default='Food', label='Theme')],
200
- outputs=[gr.outputs.Textbox(label='Generated Text')],
201
- title='Yelp Review Generator',
202
- description='Generate a Yelp review based on a prompt, length of text, and theme.',
203
- examples=[
204
- ['I had a great experience at this restaurant.', 50, 'Service'],
205
- ['The service was terrible and the food was cold.', 50, 'Atmosphere'],
206
- ['The food was delicious but the service was slow.', 50, 'Food'],
207
- ['The ambiance was amazing and the staff was friendly.', 75, 'Service'],
208
- ['The waitstaff was knowledgeable and attentive, but the noise level was a bit high.', 75, 'Atmosphere'],
209
- ['The menu had a good variety of options, but the portion sizes were a bit small for the price.', 75, 'Food']
210
- ],
211
- allow_flagging="manual",
212
- flagging_options=[("🙌", "positive"), ("😞", "negative")],
213
- )
214
-
215
- iface.launch(debug=False, share=True)
216
-