Spaces:
Runtime error
Runtime error
Commit
·
909e3bf
1
Parent(s):
2f843e7
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import gradio as gr
|
3 |
+
import re
|
4 |
+
import torch
|
5 |
+
import transformers
|
6 |
+
|
7 |
+
# Define a function for generating text based on a prompt using the fine-tuned GPT-2 model and the tokenizer
|
8 |
+
def generate_text(prompt, length=100, theme=None, **kwargs):
|
9 |
+
model_url = "https://huggingface.co/sailormars18/Yelp-reviews-usingGPT2"
|
10 |
+
|
11 |
+
# Load the model from the Hugging Face space
|
12 |
+
model = transformers.GPT2LMHeadModel.from_pretrained(model_url).to(device)
|
13 |
+
|
14 |
+
# Load the tokenizer from the Hugging Face space
|
15 |
+
tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_url)
|
16 |
+
|
17 |
+
# If a theme is specified, add it to the prompt as a prefix for a special token
|
18 |
+
if theme:
|
19 |
+
prompt = ' <{}> '.format(theme.strip()) + prompt.strip()
|
20 |
+
|
21 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
22 |
+
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=device)
|
23 |
+
pad_token_id = tokenizer.eos_token_id
|
24 |
+
|
25 |
+
# Set the max length of the generated text based on the input parameter
|
26 |
+
max_length = length if length > 0 else 100
|
27 |
+
|
28 |
+
sample_outputs = model.generate(
|
29 |
+
input_ids,
|
30 |
+
attention_mask=attention_mask,
|
31 |
+
pad_token_id=pad_token_id,
|
32 |
+
do_sample=True,
|
33 |
+
max_length=max_length,
|
34 |
+
top_k=50,
|
35 |
+
top_p=0.95,
|
36 |
+
temperature=0.8,
|
37 |
+
num_return_sequences=1,
|
38 |
+
no_repeat_ngram_size=2,
|
39 |
+
repetition_penalty=1.5,
|
40 |
+
)
|
41 |
+
generated_text = tokenizer.decode(sample_outputs[0], skip_special_tokens=True)
|
42 |
+
|
43 |
+
# Post preprocessing of the generated text
|
44 |
+
|
45 |
+
# Remove any leading and trailing quotation marks
|
46 |
+
generated_text = generated_text.strip('"')
|
47 |
+
|
48 |
+
# Remove leading and trailing whitespace
|
49 |
+
generated_text = generated_text.strip()
|
50 |
+
|
51 |
+
# Find the special token in the generated text and remove it
|
52 |
+
match = re.search(r'<([^>]+)>', generated_text)
|
53 |
+
if match:
|
54 |
+
generated_text = generated_text[:match.start()] + generated_text[match.end():]
|
55 |
+
|
56 |
+
# Remove any leading numeric characters and quotation marks
|
57 |
+
generated_text = re.sub(r'^\d+', '', generated_text)
|
58 |
+
generated_text = re.sub(r'^"', '', generated_text)
|
59 |
+
|
60 |
+
# Remove any newline characters from the generated text
|
61 |
+
generated_text = generated_text.replace('\n', '')
|
62 |
+
|
63 |
+
# Remove any other unwanted special characters
|
64 |
+
generated_text = re.sub(r'[^\w\s]+', '', generated_text)
|
65 |
+
|
66 |
+
return generated_text.strip().capitalize()
|
67 |
+
|
68 |
+
# Define a Gradio interface for the generate_text function, allowing users to input a prompt and generate text based on it
|
69 |
+
iface = gr.Interface(
|
70 |
+
fn=generate_text,
|
71 |
+
inputs=['text', gr.inputs.Slider(minimum=10, maximum=100, default=50, label='Length of text'),
|
72 |
+
gr.inputs.Textbox(default='Food', label='Theme')],
|
73 |
+
outputs=[gr.outputs.Textbox(label='Generated Text')],
|
74 |
+
title='Yelp Review Generator',
|
75 |
+
description='Generate a Yelp review based on a prompt, length of text, and theme.',
|
76 |
+
examples=[
|
77 |
+
['I had a great experience at this restaurant.', 50, 'Service'],
|
78 |
+
['The service was terrible and the food was cold.', 50, 'Atmosphere'],
|
79 |
+
['The food was delicious but the service was slow.', 50, 'Food'],
|
80 |
+
['The ambiance was amazing and the staff was friendly.', 75, 'Service'],
|
81 |
+
['The waitstaff was knowledgeable and attentive, but the noise level was a bit high.', 75, 'Atmosphere'],
|
82 |
+
['The menu had a good variety of options, but the portion sizes were a bit small for the price.', 75, 'Food']
|
83 |
+
],
|
84 |
+
allow_flagging="manual",
|
85 |
+
flagging_options=[("🙌", "positive"), ("😞", "negative")],
|
86 |
+
)
|
87 |
+
|
88 |
+
iface.launch(debug=False, share=True)
|