import subprocess subprocess.run(["pip", "install","gradio","torch","transformers"]) import re import gradio as gr import torch import transformers import json from transformers import GPT2LMHeadModel, GPT2Tokenizer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Define a function for generating text based on a prompt using the fine-tuned GPT-2 model and the tokenizer def generate_text(prompt, length=100, theme=None, **kwargs): model_url = "https://huggingface.co/spaces/sailormars18/Yelp-reviews-usingGPT2/blob/main/pytorch_model.bin" config_url = "https://huggingface.co/spaces/sailormars18/Yelp-reviews-usingGPT2/blob/main/config.json" generation_config_url = "https://huggingface.co/spaces/sailormars18/Yelp-reviews-usingGPT2/blob/main/generation_config.json" # Load the model from the Hugging Face space model = transformers.GPT2LMHeadModel.from_pretrained("./pytorch_model.bin", config="./config.json").to(device) # Load the tokenizer from the Hugging Face space tokenizer = transformers.GPT2Tokenizer.from_pretrained('gpt2') # If a theme is specified, add it to the prompt as a prefix for a special token if theme: prompt = ' <{}> '.format(theme.strip()) + prompt.strip() input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device) attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=device) pad_token_id = tokenizer.eos_token_id # Set the max length of the generated text based on the input parameter max_length = length if length > 0 else 100 sample_outputs = model.generate( input_ids, attention_mask=attention_mask, pad_token_id=pad_token_id, do_sample=True, max_length=max_length, top_k=50, top_p=0.95, temperature=0.8, num_return_sequences=1, no_repeat_ngram_size=2, repetition_penalty=1.5, ) generated_text = tokenizer.decode(sample_outputs[0], skip_special_tokens=True) # Post preprocessing of the generated text # Remove any leading and trailing quotation marks generated_text = generated_text.strip('"') # Remove leading and trailing whitespace generated_text = generated_text.strip() # Find the special token in the generated text and remove it match = re.search(r'<([^>]+)>', generated_text) if match: generated_text = generated_text[:match.start()] + generated_text[match.end():] # Remove any leading numeric characters and quotation marks generated_text = re.sub(r'^\d+', '', generated_text) generated_text = re.sub(r'^"', '', generated_text) # Remove any newline characters from the generated text generated_text = generated_text.replace('\n', '') # Remove any other unwanted special characters generated_text = re.sub(r'[^\w\s]+', '', generated_text) return generated_text.strip().capitalize() # Define a Gradio interface for the generate_text function, allowing users to input a prompt and generate text based on it iface = gr.Interface( fn=generate_text, inputs=['text', gr.inputs.Slider(minimum=10, maximum=100, default=50, label='Length of text'), gr.inputs.Textbox(default='Food', label='Theme')], outputs=[gr.outputs.Textbox(label='Generated Text')], title='Yelp Review Generator', description='Generate a Yelp review based on a prompt, length of text, and theme.', examples=[ ['I had a great experience at this restaurant.', 50, 'Service'], ['The service was terrible and the food was cold.', 50, 'Atmosphere'], ['The food was delicious but the service was slow.', 50, 'Food'], ['The ambiance was amazing and the staff was friendly.', 75, 'Service'], ['The waitstaff was knowledgeable and attentive, but the noise level was a bit high.', 75, 'Atmosphere'], ['The menu had a good variety of options, but the portion sizes were a bit small for the price.', 75, 'Food'] ], allow_flagging="manual", flagging_options=[("🙌", "positive"), ("😞", "negative")], ) iface.launch(debug=False)