File size: 1,449 Bytes
228b24d
 
 
fd778e9
228b24d
fd778e9
228b24d
fd778e9
228b24d
fd778e9
228b24d
fd778e9
228b24d
 
 
fd778e9
228b24d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15aed8d
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import streamlit as st
from transformers import pipeline

# Function to load the translation pipeline based on the target language
@st.cache_resource
def load_translation_pipeline(target_language):
    if target_language == "French":
        model_name = "Helsinki-NLP/opus-mt-en-fr"
    elif target_language == "Spanish":
        model_name = "Helsinki-NLP/opus-mt-en-es"
    elif target_language == "German":
        model_name = "Helsinki-NLP/opus-mt-en-de"
    else:
        st.error("Target language not supported!")
        return None
    return pipeline("translation", model=model_name)

# Streamlit app layout
st.title("Language Translator")

# Input text to translate
text = st.text_area("Enter text in English to translate:")

# Select target language
target_language = st.selectbox(
    "Select target language:",
    ["French", "Spanish", "German"]  # Add more languages if needed
)

# Translate button
if st.button("Translate"):
    if text:
        # Load the translation pipeline based on selected language
        translation_pipeline = load_translation_pipeline(target_language)
        if translation_pipeline:
            # Perform translation
            translation = translation_pipeline(text)
            translated_text = translation[0]['translation_text']
            st.write(f"**Translated text in {target_language}:**")
            st.write(translated_text)
    else:
        st.error("Please enter text to translate.")