Spaces:
Sleeping
Sleeping
File size: 1,449 Bytes
228b24d fd778e9 228b24d fd778e9 228b24d fd778e9 228b24d fd778e9 228b24d fd778e9 228b24d fd778e9 228b24d 15aed8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import streamlit as st
from transformers import pipeline
# Function to load the translation pipeline based on the target language
@st.cache_resource
def load_translation_pipeline(target_language):
if target_language == "French":
model_name = "Helsinki-NLP/opus-mt-en-fr"
elif target_language == "Spanish":
model_name = "Helsinki-NLP/opus-mt-en-es"
elif target_language == "German":
model_name = "Helsinki-NLP/opus-mt-en-de"
else:
st.error("Target language not supported!")
return None
return pipeline("translation", model=model_name)
# Streamlit app layout
st.title("Language Translator")
# Input text to translate
text = st.text_area("Enter text in English to translate:")
# Select target language
target_language = st.selectbox(
"Select target language:",
["French", "Spanish", "German"] # Add more languages if needed
)
# Translate button
if st.button("Translate"):
if text:
# Load the translation pipeline based on selected language
translation_pipeline = load_translation_pipeline(target_language)
if translation_pipeline:
# Perform translation
translation = translation_pipeline(text)
translated_text = translation[0]['translation_text']
st.write(f"**Translated text in {target_language}:**")
st.write(translated_text)
else:
st.error("Please enter text to translate.")
|