saima730 commited on
Commit
79b8992
·
verified ·
1 Parent(s): dc7fe65

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -0
app.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import pipeline
4
+ from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
5
+ from diffusers.utils import export_to_gif
6
+ from huggingface_hub import hf_hub_download
7
+ from safetensors.torch import load_file
8
+ from gtts import gTTS
9
+ from moviepy.editor import VideoFileClip, AudioFileClip
10
+
11
+ # Load the text generation model
12
+ generator = pipeline('text-generation', model='distilgpt2')
13
+
14
+ def generate_text(prompt):
15
+ response = generator(prompt, max_length=150, num_return_sequences=1)
16
+ return response[0]['generated_text']
17
+
18
+ # Text-to-speech conversion
19
+ def text_to_speech(text, filename='output_audio.mp3'):
20
+ tts = gTTS(text)
21
+ tts.save(filename)
22
+ return filename
23
+
24
+ # Generate animation using AnimateDiffPipeline
25
+ def create_animation(prompt, output_file='animation.gif'):
26
+ device = "cuda" if torch.cuda.is_available() else "cpu"
27
+ dtype = torch.float16 if device == "cuda" else torch.float32
28
+ step = 4
29
+ repo = "ByteDance/AnimateDiff-Lightning"
30
+ ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
31
+ base = "emilianJR/epiCRealism"
32
+
33
+ # Load adapter and pipeline
34
+ adapter = MotionAdapter().to(device, dtype)
35
+ adapter.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
36
+ pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
37
+ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
38
+
39
+ # Generate animation based on prompt
40
+ output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step)
41
+ export_to_gif(output.frames[0], output_file)
42
+
43
+ return output_file
44
+
45
+ # Combine animation and audio into a video
46
+ def create_video(animation_file, audio_file, output_file='output_video.mp4'):
47
+ clip = VideoFileClip(animation_file)
48
+ audio = AudioFileClip(audio_file)
49
+ clip = clip.set_audio(audio)
50
+ clip.write_videofile(output_file, fps=24)
51
+
52
+ def generate_educational_video(prompt):
53
+ # Step 1: Generate text from prompt
54
+ generated_text = generate_text(prompt)
55
+
56
+ # Step 2: Convert text to speech
57
+ audio_file = text_to_speech(generated_text)
58
+
59
+ # Step 3: Create animation based on prompt
60
+ animation_file = create_animation(prompt)
61
+
62
+ # Step 4: Assemble the video
63
+ create_video(animation_file, audio_file)
64
+
65
+ # Return the path to the video
66
+ return 'output_video.mp4'
67
+
68
+ # Streamlit UI
69
+ st.title("Educational Video Generator")
70
+
71
+ # User input for prompt
72
+ prompt = st.text_input("Enter your prompt here:")
73
+
74
+ if st.button("Generate Video"):
75
+ if prompt:
76
+ st.write("Generating video, please wait...")
77
+
78
+ # Generate the video
79
+ video_path = generate_educational_video(prompt)
80
+
81
+ # Display the video in Streamlit
82
+ st.video(video_path)
83
+ else:
84
+ st.warning("Please enter a prompt to generate the video.")