Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
3 |
|
4 |
# Function to generate response using RAG (Retrieval-Augmented Generation)
|
5 |
def generate_response_with_rag(txt):
|
6 |
try:
|
7 |
# Initialize the RAG model and tokenizer
|
8 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
9 |
-
retriever = RagRetriever.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
10 |
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq")
|
11 |
|
12 |
# Tokenize the input text
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
3 |
|
4 |
# Function to generate response using RAG (Retrieval-Augmented Generation)
|
5 |
def generate_response_with_rag(txt):
|
6 |
try:
|
7 |
# Initialize the RAG model and tokenizer
|
8 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
9 |
+
retriever = RagRetriever.from_pretrained(
|
10 |
+
"facebook/rag-token-nq",
|
11 |
+
index_name="exact",
|
12 |
+
use_dummy_dataset=True,
|
13 |
+
trust_remote_code=True # Allows loading the required dataset script
|
14 |
+
)
|
15 |
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq")
|
16 |
|
17 |
# Tokenize the input text
|