saima730 commited on
Commit
c1f4ca4
·
verified ·
1 Parent(s): 2d0ece1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -0
app.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !pip install transformers diffusers gtts moviepy safetensors
2
+
3
+ import torch
4
+
5
+ # Continue with your code...
6
+
7
+ from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
8
+ from diffusers.utils import export_to_gif
9
+ from huggingface_hub import hf_hub_download
10
+ from safetensors.torch import load_file
11
+ from transformers import pipeline
12
+ from gtts import gTTS
13
+ from moviepy.editor import *
14
+ from IPython.display import Video
15
+
16
+ # Load the text generation model
17
+ generator = pipeline('text-generation', model='distilgpt2')
18
+
19
+ def generate_text(prompt):
20
+ response = generator(prompt, max_length=150, num_return_sequences=1)
21
+ return response[0]['generated_text']
22
+
23
+ # Text-to-speech conversion
24
+ def text_to_speech(text, filename='output_audio.mp3'):
25
+ tts = gTTS(text)
26
+ tts.save(filename)
27
+ return filename
28
+
29
+ # Generate animation using AnimateDiffPipeline
30
+ def create_animation(prompt, output_file='animation.gif'):
31
+ device = "cuda"
32
+ dtype = torch.float16
33
+ step = 4
34
+ repo = "ByteDance/AnimateDiff-Lightning"
35
+ ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
36
+ base = "emilianJR/epiCRealism"
37
+
38
+ # Load adapter and pipeline
39
+ adapter = MotionAdapter().to(device, dtype)
40
+ adapter.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
41
+ pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
42
+ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
43
+
44
+ # Generate animation based on prompt
45
+ output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step)
46
+ export_to_gif(output.frames[0], output_file)
47
+
48
+ return output_file
49
+
50
+ # Combine animation and audio into a video
51
+ def create_video(animation_file, audio_file, output_file='output_video.mp4'):
52
+ clip = VideoFileClip(animation_file)
53
+ audio = AudioFileClip(audio_file)
54
+ clip = clip.set_audio(audio)
55
+ clip.write_videofile(output_file, fps=24)
56
+
57
+ def generate_educational_video(prompt):
58
+ # Step 1: Generate text from prompt
59
+ generated_text = generate_text(prompt)
60
+
61
+ # Step 2: Convert text to speech
62
+ audio_file = text_to_speech(generated_text)
63
+
64
+ # Step 3: Create animation based on prompt
65
+ animation_file = create_animation(prompt)
66
+
67
+ # Step 4: Assemble the video
68
+ create_video(animation_file, audio_file)
69
+
70
+ # Step 5: Display the video
71
+ return Video("output_video.mp4", embed=True)
72
+
73
+ # Example usage
74
+ generate_educational_video("give me a jock?")