import gradio as gr import torch from transformers import pipeline from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler from diffusers.utils import export_to_gif from huggingface_hub import hf_hub_download from safetensors.torch import load_file from gtts import gTTS from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips import os # Load the text generation model generator = pipeline('text-generation', model='distilgpt2') def generate_text(prompt): response = generator(prompt, max_length=150, num_return_sequences=1) return response[0]['generated_text'] def text_to_speech(text, filename='output_audio.mp3'): tts = gTTS(text) tts.save(filename) return filename def create_animation(prompt, output_file='animation.gif'): device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if device == "cuda" else torch.float32 step = 4 repo = "ByteDance/AnimateDiff-Lightning" ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" base = "emilianJR/epiCRealism" adapter = MotionAdapter().to(device, dtype) adapter.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device)) pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step) export_to_gif(output.frames[0], output_file) return output_file def create_video(animation_file, audio_file, output_file='output_video.mp4'): clip = VideoFileClip(animation_file) audio = AudioFileClip(audio_file) clip = clip.set_audio(audio) clip.write_videofile(output_file, fps=24) return output_file def generate_educational_video(prompt): generated_text = generate_text(prompt) audio_file = text_to_speech(generated_text) animation_file = create_animation(prompt) video_file = create_video(animation_file, audio_file) return video_file # Define Gradio Interface def gradio_interface(prompt): video_path = generate_educational_video(prompt) return video_path interface = gr.Interface( fn=gradio_interface, inputs="text", outputs="video", title="Educational Video Generator", description="Enter a prompt to generate a video." ) interface.launch()