import gradio as gr from gtts import gTTS from moviepy.editor import TextClip, AudioFileClip from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration import torch import tempfile # Initialize RAG model components tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True) model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever) device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) def generate_response(input_text): input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) generated = model.generate(input_ids) response = tokenizer.batch_decode(generated, skip_special_tokens=True)[0] return response def text_to_speech(text): tts = gTTS(text) with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_audio_file: tts.save(temp_audio_file.name) return temp_audio_file.name def text_to_video(text, audio_filename): text_clip = TextClip(text, fontsize=50, color='white', bg_color='black', size=(640, 480)) text_clip = text_clip.set_duration(10) audio_clip = AudioFileClip(audio_filename) video_clip = text_clip.set_audio(audio_clip) with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video_file: video_clip.write_videofile(temp_video_file.name, codec='libx264') return temp_video_file.name def process_text(input_text): response = generate_response(input_text) audio_file = text_to_speech(response) video_file = text_to_video(response, audio_file) return response, audio_file, video_file iface = gr.Interface( fn=process_text, inputs=gr.Textbox(label="Enter your text:"), outputs=[gr.Textbox(label="RAG Model Response"), gr.Audio(label="Audio"), gr.Video(label="Video")], live=True ) iface.launch()