Spaces:
Runtime error
Runtime error
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
from gtts import gTTS
|
5 |
+
import io
|
6 |
+
import tempfile
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
|
10 |
+
# Configuration (since we don't have the config.py file)
|
11 |
+
MODEL_CONFIG = {
|
12 |
+
"models": {
|
13 |
+
"granite-3b": "ibm-granite/granite-3b-code-base",
|
14 |
+
"granite-8b": "ibm-granite/granite-8b-code-base"
|
15 |
+
},
|
16 |
+
"generation_params": {
|
17 |
+
"max_new_tokens": 512,
|
18 |
+
"temperature": 0.7,
|
19 |
+
"do_sample": True,
|
20 |
+
"pad_token_id": None
|
21 |
+
}
|
22 |
+
}
|
23 |
+
|
24 |
+
TTS_CONFIG = {
|
25 |
+
"engine": "gtts",
|
26 |
+
"voice_speed": 150,
|
27 |
+
"voice_volume": 0.9
|
28 |
+
}
|
29 |
+
|
30 |
+
TONE_PROMPTS = {
|
31 |
+
"Neutral": "Rewrite the following text in a clear, neutral tone suitable for audiobook narration:",
|
32 |
+
"Suspenseful": "Rewrite the following text with suspenseful, engaging language that builds tension:",
|
33 |
+
"Inspiring": "Rewrite the following text in an inspiring, motivational tone that uplifts the reader:"
|
34 |
+
}
|
35 |
+
|
36 |
+
# Global variables to store model
|
37 |
+
model = None
|
38 |
+
tokenizer = None
|
39 |
+
model_loaded = False
|
40 |
+
|
41 |
+
def load_granite_model(model_name="granite-3b"):
|
42 |
+
"""Load IBM Granite model locally"""
|
43 |
+
global model, tokenizer, model_loaded
|
44 |
+
|
45 |
+
model_id = MODEL_CONFIG["models"][model_name]
|
46 |
+
|
47 |
+
try:
|
48 |
+
# Load tokenizer
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
50 |
+
if tokenizer.pad_token is None:
|
51 |
+
tokenizer.pad_token = tokenizer.eos_token
|
52 |
+
|
53 |
+
# Load model
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
55 |
+
model_id,
|
56 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
57 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
58 |
+
trust_remote_code=True
|
59 |
+
)
|
60 |
+
|
61 |
+
model_loaded = True
|
62 |
+
return "✅ Model loaded successfully!"
|
63 |
+
except Exception as e:
|
64 |
+
model_loaded = False
|
65 |
+
return f"❌ Error loading model: {str(e)}"
|
66 |
+
|
67 |
+
def rewrite_text_with_granite(text, tone):
|
68 |
+
"""Rewrite text using local Granite model"""
|
69 |
+
global model, tokenizer, model_loaded
|
70 |
+
|
71 |
+
if not model_loaded or model is None or tokenizer is None:
|
72 |
+
return text
|
73 |
+
|
74 |
+
try:
|
75 |
+
# Create prompt
|
76 |
+
prompt = f"{TONE_PROMPTS[tone]}\n\nOriginal text: {text}\n\nRewritten text:"
|
77 |
+
|
78 |
+
# Tokenize
|
79 |
+
inputs = tokenizer(
|
80 |
+
prompt,
|
81 |
+
return_tensors="pt",
|
82 |
+
truncation=True,
|
83 |
+
max_length=1024
|
84 |
+
)
|
85 |
+
|
86 |
+
# Set pad_token_id for generation
|
87 |
+
generation_params = MODEL_CONFIG["generation_params"].copy()
|
88 |
+
generation_params["pad_token_id"] = tokenizer.pad_token_id
|
89 |
+
|
90 |
+
# Generate
|
91 |
+
with torch.no_grad():
|
92 |
+
outputs = model.generate(
|
93 |
+
inputs.input_ids,
|
94 |
+
**generation_params,
|
95 |
+
attention_mask=inputs.attention_mask
|
96 |
+
)
|
97 |
+
|
98 |
+
# Decode
|
99 |
+
generated_text = tokenizer.decode(
|
100 |
+
outputs[0],
|
101 |
+
skip_special_tokens=True
|
102 |
+
)
|
103 |
+
|
104 |
+
# Extract only the rewritten part
|
105 |
+
if "Rewritten text:" in generated_text:
|
106 |
+
rewritten = generated_text.split("Rewritten text:")[-1].strip()
|
107 |
+
else:
|
108 |
+
rewritten = generated_text[len(prompt):].strip()
|
109 |
+
|
110 |
+
return rewritten if rewritten else text
|
111 |
+
|
112 |
+
except Exception as e:
|
113 |
+
return f"Error rewriting text: {str(e)}"
|
114 |
+
|
115 |
+
def generate_audio_gtts(text, language='en'):
|
116 |
+
"""Generate audio using Google Text-to-Speech"""
|
117 |
+
try:
|
118 |
+
tts = gTTS(text=text, lang=language, slow=False)
|
119 |
+
|
120 |
+
# Save to temporary file and return path
|
121 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as tmp_file:
|
122 |
+
tts.save(tmp_file.name)
|
123 |
+
return tmp_file.name
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
return None
|
127 |
+
|
128 |
+
def process_audiobook(input_text, uploaded_file, tone, model_choice):
|
129 |
+
"""Main processing function"""
|
130 |
+
global model_loaded
|
131 |
+
|
132 |
+
# Check if model is loaded
|
133 |
+
if not model_loaded:
|
134 |
+
return (
|
135 |
+
"❌ Please load the AI model first!",
|
136 |
+
None,
|
137 |
+
None,
|
138 |
+
"Please click 'Load Model' button first."
|
139 |
+
)
|
140 |
+
|
141 |
+
# Determine input text
|
142 |
+
text_to_process = ""
|
143 |
+
if uploaded_file is not None:
|
144 |
+
try:
|
145 |
+
# Read uploaded file
|
146 |
+
content = uploaded_file.read()
|
147 |
+
if isinstance(content, bytes):
|
148 |
+
text_to_process = content.decode('utf-8')
|
149 |
+
else:
|
150 |
+
text_to_process = str(content)
|
151 |
+
except Exception as e:
|
152 |
+
return f"Error reading file: {str(e)}", None, None, ""
|
153 |
+
elif input_text:
|
154 |
+
text_to_process = input_text
|
155 |
+
else:
|
156 |
+
return "Please provide text input or upload a file.", None, None, ""
|
157 |
+
|
158 |
+
# Truncate if too long
|
159 |
+
if len(text_to_process) > 2000:
|
160 |
+
text_to_process = text_to_process[:2000]
|
161 |
+
status_msg = "⚠️ Text truncated to 2000 characters for optimal processing."
|
162 |
+
else:
|
163 |
+
status_msg = f"✅ Processing {len(text_to_process)} characters."
|
164 |
+
|
165 |
+
# Rewrite text with AI
|
166 |
+
try:
|
167 |
+
rewritten_text = rewrite_text_with_granite(text_to_process, tone)
|
168 |
+
except Exception as e:
|
169 |
+
return f"Error in text rewriting: {str(e)}", None, None, ""
|
170 |
+
|
171 |
+
# Generate audio
|
172 |
+
try:
|
173 |
+
audio_file_path = generate_audio_gtts(rewritten_text)
|
174 |
+
if audio_file_path is None:
|
175 |
+
return status_msg, text_to_process, rewritten_text, "❌ Failed to generate audio."
|
176 |
+
except Exception as e:
|
177 |
+
return status_msg, text_to_process, rewritten_text, f"Error generating audio: {str(e)}"
|
178 |
+
|
179 |
+
return (
|
180 |
+
status_msg,
|
181 |
+
text_to_process,
|
182 |
+
rewritten_text,
|
183 |
+
audio_file_path
|
184 |
+
)
|
185 |
+
|
186 |
+
def get_model_status():
|
187 |
+
"""Get current model status"""
|
188 |
+
global model_loaded
|
189 |
+
if model_loaded:
|
190 |
+
device = "GPU" if torch.cuda.is_available() else "CPU"
|
191 |
+
return f"✅ Model loaded on {device}"
|
192 |
+
else:
|
193 |
+
return "❌ Model not loaded"
|
194 |
+
|
195 |
+
# Create Gradio interface
|
196 |
+
def create_interface():
|
197 |
+
with gr.Blocks(
|
198 |
+
title="EchoVerse - Local AI Audiobook Creator",
|
199 |
+
theme=gr.themes.Soft(),
|
200 |
+
css="""
|
201 |
+
.gradio-container {
|
202 |
+
font-family: 'Arial', sans-serif;
|
203 |
+
}
|
204 |
+
.main-header {
|
205 |
+
text-align: center;
|
206 |
+
color: #2E86AB;
|
207 |
+
margin-bottom: 20px;
|
208 |
+
}
|
209 |
+
.status-box {
|
210 |
+
padding: 10px;
|
211 |
+
border-radius: 5px;
|
212 |
+
margin: 10px 0;
|
213 |
+
}
|
214 |
+
"""
|
215 |
+
) as demo:
|
216 |
+
|
217 |
+
# Header
|
218 |
+
gr.HTML("""
|
219 |
+
<div class="main-header">
|
220 |
+
<h1>��� EchoVerse Local</h1>
|
221 |
+
<h3>Transform Text into Expressive Audiobooks with Local AI</h3>
|
222 |
+
<p><i>Powered by IBM Granite 3B - No internet required for AI processing!</i></p>
|
223 |
+
</div>
|
224 |
+
""")
|
225 |
+
|
226 |
+
# Model Setup Section
|
227 |
+
with gr.Group():
|
228 |
+
gr.HTML("<h2>��� AI Model Setup</h2>")
|
229 |
+
|
230 |
+
with gr.Row():
|
231 |
+
model_choice = gr.Dropdown(
|
232 |
+
choices=list(MODEL_CONFIG["models"].keys()),
|
233 |
+
value="granite-3b",
|
234 |
+
label="Choose Granite Model",
|
235 |
+
info="3B model is recommended for most computers. 8B requires more RAM."
|
236 |
+
)
|
237 |
+
|
238 |
+
load_btn = gr.Button("Load Model", variant="primary")
|
239 |
+
|
240 |
+
model_status = gr.Textbox(
|
241 |
+
label="Model Status",
|
242 |
+
value="❌ Model not loaded",
|
243 |
+
interactive=False
|
244 |
+
)
|
245 |
+
|
246 |
+
# Input Section
|
247 |
+
with gr.Group():
|
248 |
+
gr.HTML("<h2>��� Input Your Content</h2>")
|
249 |
+
|
250 |
+
uploaded_file = gr.File(
|
251 |
+
label="Upload a text file",
|
252 |
+
file_types=[".txt"],
|
253 |
+
type="binary"
|
254 |
+
)
|
255 |
+
|
256 |
+
input_text = gr.Textbox(
|
257 |
+
label="Or paste your text here:",
|
258 |
+
lines=8,
|
259 |
+
placeholder="Enter the text you want to convert to an audiobook...",
|
260 |
+
max_lines=15
|
261 |
+
)
|
262 |
+
|
263 |
+
# Configuration Section
|
264 |
+
with gr.Group():
|
265 |
+
gr.HTML("<h2>⚙️ Audio Configuration</h2>")
|
266 |
+
|
267 |
+
with gr.Row():
|
268 |
+
tone = gr.Dropdown(
|
269 |
+
choices=["Neutral", "Suspenseful", "Inspiring"],
|
270 |
+
value="Neutral",
|
271 |
+
label="Select Tone",
|
272 |
+
info="Choose how you want the text to be rewritten"
|
273 |
+
)
|
274 |
+
|
275 |
+
# Generate Button
|
276 |
+
generate_btn = gr.Button("��� Generate Audiobook", variant="primary", size="lg")
|
277 |
+
|
278 |
+
# Results Section
|
279 |
+
with gr.Group():
|
280 |
+
gr.HTML("<h2>��� Results</h2>")
|
281 |
+
|
282 |
+
status_output = gr.Textbox(
|
283 |
+
label="Status",
|
284 |
+
interactive=False
|
285 |
+
)
|
286 |
+
|
287 |
+
with gr.Row():
|
288 |
+
original_text = gr.Textbox(
|
289 |
+
label="Original Text",
|
290 |
+
lines=10,
|
291 |
+
interactive=False
|
292 |
+
)
|
293 |
+
|
294 |
+
rewritten_text = gr.Textbox(
|
295 |
+
label="Rewritten Text",
|
296 |
+
lines=10,
|
297 |
+
interactive=False
|
298 |
+
)
|
299 |
+
|
300 |
+
# Audio Output
|
301 |
+
gr.HTML("<h2>��� Your Audiobook</h2>")
|
302 |
+
audio_output = gr.Audio(
|
303 |
+
label="Generated Audiobook",
|
304 |
+
type="filepath"
|
305 |
+
)
|
306 |
+
|
307 |
+
# System Info
|
308 |
+
with gr.Group():
|
309 |
+
gr.HTML("<h2>��� System Info</h2>")
|
310 |
+
|
311 |
+
system_info = gr.HTML(f"""
|
312 |
+
<div>
|
313 |
+
<p><strong>GPU Available:</strong> {'✅ Yes' if torch.cuda.is_available() else '❌ No (CPU only)'}</p>
|
314 |
+
<p><strong>TTS Engine:</strong> {TTS_CONFIG['engine']}</p>
|
315 |
+
</div>
|
316 |
+
|
317 |
+
<h3>��� Tips</h3>
|
318 |
+
<ul>
|
319 |
+
<li>First model load takes time</li>
|
320 |
+
<li>3B model: ~6GB RAM needed</li>
|
321 |
+
<li>8B model: ~16GB RAM needed</li>
|
322 |
+
<li>GPU greatly speeds up processing</li>
|
323 |
+
<li>gTTS requires internet connection</li>
|
324 |
+
</ul>
|
325 |
+
""")
|
326 |
+
|
327 |
+
# Event handlers
|
328 |
+
load_btn.click(
|
329 |
+
fn=load_granite_model,
|
330 |
+
inputs=[model_choice],
|
331 |
+
outputs=[model_status]
|
332 |
+
)
|
333 |
+
|
334 |
+
generate_btn.click(
|
335 |
+
fn=process_audiobook,
|
336 |
+
inputs=[input_text, uploaded_file, tone, model_choice],
|
337 |
+
outputs=[status_output, original_text, rewritten_text, audio_output]
|
338 |
+
)
|
339 |
+
|
340 |
+
return demo
|
341 |
+
|
342 |
+
# Launch the app
|
343 |
+
if __name__ == "__main__":
|
344 |
+
demo = create_interface()
|
345 |
+
demo.launch(
|
346 |
+
server_name="0.0.0.0",
|
347 |
+
server_port=7860,
|
348 |
+
share=False
|
349 |
+
)
|