Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import MarianMTModel, MarianTokenizer | |
from PIL import Image | |
# Define available languages with MarianMT models | |
LANGUAGES = { | |
'Spanish': 'es', | |
'French': 'fr', | |
'German': 'de', | |
'Chinese': 'zh', | |
'Hindi': 'hi', | |
'Arabic': 'ar', | |
'Japanese': 'ja', | |
'Russian': 'ru', | |
'Italian': 'it', | |
'Portuguese': 'pt', | |
} | |
# Load a background image for the app | |
def add_bg_image(image_path): | |
with open(image_path, "rb") as f: | |
data = f.read() | |
st.markdown( | |
f""" | |
<style> | |
.stApp {{ | |
background-image: url(data:image/{"png"};base64,{data.encode("base64").decode()}); | |
background-size: cover; | |
}} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Function to load the model based on the selected language | |
def load_model(src_lang='en', tgt_lang='es'): | |
model_name = f'Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}' | |
model = MarianMTModel.from_pretrained(model_name) | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
return model, tokenizer | |
# Function to translate text | |
def translate_text(model, tokenizer, text): | |
inputs = tokenizer.encode(text, return_tensors='pt', truncation=True, padding=True) | |
translated = model.generate(inputs, max_length=512, num_beams=5, early_stopping=True) | |
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) | |
return translated_text | |
# Load the background image | |
add_bg_image("path_to_your_image.png") # You need to provide your image | |
# Streamlit app layout | |
st.markdown("<h1 style='text-align: center; color: #4B9CD3;'>π Multilingual Translator π</h1>", unsafe_allow_html=True) | |
st.markdown("<p style='text-align: center; color: #333; font-size: 18px;'>Translate English text into multiple languages</p>", unsafe_allow_html=True) | |
# Sidebar for language selection and instructions | |
st.sidebar.title("Language Options") | |
language = st.sidebar.selectbox("Choose target language", list(LANGUAGES.keys())) | |
st.sidebar.markdown("### How to use") | |
st.sidebar.write("1. Enter English text in the box below.") | |
st.sidebar.write("2. Select the target language from the options.") | |
st.sidebar.write("3. Click **Translate** to get the result.") | |
# Input text | |
text = st.text_area("Enter text in English to translate:", height=150) | |
# Character count | |
st.write(f"Character count: {len(text)}") | |
# Button to translate | |
if st.button("Translate"): | |
if text: | |
# Show a spinner during the translation process | |
with st.spinner('Translating...'): | |
# Load model and tokenizer based on selected language | |
tgt_lang = LANGUAGES[language] | |
model, tokenizer = load_model('en', tgt_lang) | |
# Perform translation | |
translated_text = translate_text(model, tokenizer, text) | |
# Display the translation | |
st.markdown("<h3 style='color: #4B9CD3;'>Translated Text:</h3>", unsafe_allow_html=True) | |
st.success(translated_text) | |
else: | |
st.error("Please enter text to translate.") | |
# Footer with styling | |
st.markdown( | |
""" | |
<style> | |
footer {visibility: hidden;} | |
.footer-text { | |
position: fixed; | |
bottom: 0; | |
left: 0; | |
right: 0; | |
background-color: #f9f9f9; | |
padding: 10px; | |
text-align: center; | |
color: #4B9CD3; | |
font-weight: bold; | |
} | |
</style> | |
<div class="footer-text">Powered by Hugging Face Transformers</div> | |
""", | |
unsafe_allow_html=True | |
) | |