Spaces:
Runtime error
Runtime error
import time | |
from transformers import pipeline | |
import gradio as gr | |
import numpy as np | |
import librosa | |
transcriber_hindi = pipeline("automatic-speech-recognition", model="ai4bharat/indicwav2vec-hindi") | |
transcriber_bengali = pipeline("automatic-speech-recognition", model="ai4bharat/indicwav2vec_v1_bengali") | |
transcriber_odia = pipeline("automatic-speech-recognition", model="ai4bharat/indicwav2vec-odia") | |
transcriber_gujarati = pipeline("automatic-speech-recognition", model="ai4bharat/indicwav2vec_v1_gujarati") | |
# transcriber_telugu = pipeline("automatic-speech-recognition", model="ai4bharat/indicwav2vec_v1_telugu") | |
# transcriber_telugu = pipeline("automatic-speech-recognition", model="anuragshas/wav2vec2-large-xlsr-53-telugu") | |
transcriber_telugu = pipeline("automatic-speech-recognition", model="krishnateja/wav2vec2-telugu_150") | |
# transcriber_sinhala = pipeline("automatic-speech-recognition", model="ai4bharat/indicwav2vec_v1_sinhala") | |
# transcriber_tamil = pipeline("automatic-speech-recognition", model="ai4bharat/indicwav2vec_v1_tamil") | |
transcriber_tamil = pipeline("automatic-speech-recognition", model="Amrrs/wav2vec2-large-xlsr-53-tamil") | |
# transcriber_nepali = pipeline("automatic-speech-recognition", model="ai4bharat/indicwav2vec_v1_nepali") | |
# transcriber_marathi = pipeline("automatic-speech-recognition", model="ai4bharat/indicwav2vec_v1_marathi") | |
transcriber_kannada = pipeline("automatic-speech-recognition", model="TheAIchemist13/kannada_beekeeping_wav2vec2") | |
languages = ["hindi","bengali","odia","gujarati","telugu","tamil","kannada"] | |
def resample_to_16k(audio, orig_sr): | |
y_resampled = librosa.resample(y=audio, orig_sr=orig_sr, target_sr=16000) | |
return y_resampled | |
def transcribe(audio,lang="hindi"): | |
sr,y = audio | |
y = y.astype(np.float32) | |
y/= np.max(np.abs(y)) | |
y_resampled = resample_to_16k(y,sr) | |
if lang not in languages: | |
return "No Model","So Stay tuned!" | |
pipe= eval(f'transcriber_{lang}') | |
start_time = time.time() | |
trans = pipe(y_resampled) | |
end_time = time.time() | |
return trans["text"],(end_time-start_time) | |
demo = gr.Interface( | |
transcribe, | |
inputs=["microphone",gr.Radio(["hindi","bengali","odia","gujarati","telugu","tamil","kannada"],value="hindi")], | |
# inputs=["microphone",gr.Radio(["hindi","bengali","odia","gujarati","telugu","sinhala","tamil","nepali","marathi"],value="hindi")], | |
outputs=["text","text"], | |
examples=[["./Samples/Hindi_1.mp3","hindi"],["./Samples/Hindi_2.mp3","hindi"],["./Samples/Hindi_3.mp3","hindi"],["./Samples/Hindi_4.mp3","hindi"],["./Samples/Hindi_5.mp3","hindi"],["./Samples/Tamil_2.mp3","hindi"],["./Samples/climate ex short.wav","hindi"],["./Samples/Gujarati_1.wav","gujarati"],["./Samples/Gujarati_2.wav","gujarati"],["./Samples/Bengali_1.wav","bengali"],["./Samples/Bengali_2.wav","bengali"],["./Samples/kannada.wav","kannada"]]) | |
# examples=[["./Samples/Hindi_1.mp3","hindi"],["./Samples/Hindi_2.mp3","hindi"],["./Samples/Tamil_1.mp3","tamil"],["./Samples/Tamil_2.mp3","hindi"],["./Samples/Nepal_1.mp3","nepali"],["./Samples/Nepal_2.mp3","nepali"],["./Samples/Marathi_1.mp3","marathi"],["./Samples/Marathi_2.mp3","marathi"],["./Samples/climate ex short.wav","hindi"]]) | |
demo.launch() |