4bit-load-chat / app.py
Sakalti's picture
Create app.py
234757b verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from bitsandbytes.nn import Int8Params, Int8Linear
from transformers.utils.quantization_config import BitsAndBytesConfig
# モデルとトークナイザの読み込み
model_name = "Qwen/Qwen2.5-7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# 4bit量子化設定
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
# モデルの読み込みと量子化
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=quantization_config
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# メッセージの準備
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# メッセージをトークナイザに通す
input_ids = tokenizer([message], return_tensors="pt").input_ids.to(model.device)
# モデルの推論
output_ids = model.generate(
input_ids,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
response = response[len(message):] # 入力メッセージを削除
return response
# インターフェース
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="ユーザーの応答と依頼に答えてください。ポジティブに", label="システムメッセージ"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="新規トークン最大"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (核 sampling)",
),
],
concurrency_limit=30 # 例: 同時に4つのリクエストを処理
)
if __name__ == "__main__":
demo.launch()