import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch from bitsandbytes.nn import Int8Params, Int8Linear from transformers.utils.quantization_config import BitsAndBytesConfig # モデルとトークナイザの読み込み model_name = "Qwen/Qwen2.5-7B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) # 4bit量子化設定 quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4" ) # モデルの読み込みと量子化 model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # メッセージの準備 messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # メッセージをトークナイザに通す input_ids = tokenizer([message], return_tensors="pt").input_ids.to(model.device) # モデルの推論 output_ids = model.generate( input_ids, max_length=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, ) response = tokenizer.decode(output_ids[0], skip_special_tokens=True) response = response[len(message):] # 入力メッセージを削除 return response # インターフェース demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="ユーザーの応答と依頼に答えてください。ポジティブに", label="システムメッセージ"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="新規トークン最大"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (核 sampling)", ), ], concurrency_limit=30 # 例: 同時に4つのリクエストを処理 ) if __name__ == "__main__": demo.launch()