Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,27 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
3 |
from datasets import load_dataset, Dataset, DatasetDict
|
4 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def train_and_deploy(write_token, repo_name, license_text):
|
|
|
|
|
|
|
|
|
|
|
7 |
# トークンを環境変数に設定
|
8 |
os.environ['HF_WRITE_TOKEN'] = write_token
|
9 |
|
@@ -62,16 +81,50 @@ def train_and_deploy(write_token, repo_name, license_text):
|
|
62 |
args=training_args,
|
63 |
train_dataset=tokenized_datasets["train"],
|
64 |
eval_dataset=tokenized_datasets["test"],
|
|
|
65 |
)
|
66 |
|
67 |
# トレーニング実行
|
|
|
68 |
trainer.train()
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# モデルをHugging Face Hubにプッシュ
|
71 |
trainer.push_to_hub()
|
72 |
-
|
73 |
return f"モデルが'{repo_name}'リポジトリにデプロイされました!"
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# Gradio UI
|
76 |
with gr.Blocks() as demo:
|
77 |
gr.Markdown("### pythia トレーニングとデプロイ")
|
@@ -79,8 +132,17 @@ with gr.Blocks() as demo:
|
|
79 |
repo_input = gr.Textbox(label="リポジトリ名", placeholder="デプロイするリポジトリ名を入力してください...")
|
80 |
license_input = gr.Textbox(label="ライセンス", placeholder="ライセンス情報を入力してください...")
|
81 |
output = gr.Textbox(label="出力")
|
|
|
|
|
|
|
82 |
train_button = gr.Button("デプロイ")
|
83 |
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
demo.launch()
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
3 |
from datasets import load_dataset, Dataset, DatasetDict
|
4 |
import os
|
5 |
+
import time
|
6 |
+
|
7 |
+
# トレーニングの進行状況を格納するグローバル変数
|
8 |
+
progress_info = {
|
9 |
+
"status": "待機中",
|
10 |
+
"progress": 0,
|
11 |
+
"time_remaining": None
|
12 |
+
}
|
13 |
+
|
14 |
+
def update_progress(trainer, epoch, step, total_steps, time_remaining):
|
15 |
+
global progress_info
|
16 |
+
progress_info["status"] = f"エポック {epoch + 1} / {trainer.args.num_train_epochs}, ステップ {step + 1} / {total_steps}"
|
17 |
+
progress_info["progress"] = (step + 1) / total_steps
|
18 |
+
progress_info["time_remaining"] = time_remaining
|
19 |
|
20 |
def train_and_deploy(write_token, repo_name, license_text):
|
21 |
+
global progress_info
|
22 |
+
progress_info["status"] = "トレーニング開始"
|
23 |
+
progress_info["progress"] = 0
|
24 |
+
progress_info["time_remaining"] = None
|
25 |
+
|
26 |
# トークンを環境変数に設定
|
27 |
os.environ['HF_WRITE_TOKEN'] = write_token
|
28 |
|
|
|
81 |
args=training_args,
|
82 |
train_dataset=tokenized_datasets["train"],
|
83 |
eval_dataset=tokenized_datasets["test"],
|
84 |
+
callbacks=[CustomCallback()]
|
85 |
)
|
86 |
|
87 |
# トレーニング実行
|
88 |
+
start_time = time.time()
|
89 |
trainer.train()
|
90 |
+
end_time = time.time()
|
91 |
+
total_time = end_time - start_time
|
92 |
+
progress_info["status"] = f"トレーニング完了(所要時間: {total_time:.2f}秒)"
|
93 |
+
progress_info["progress"] = 1
|
94 |
+
progress_info["time_remaining"] = 0
|
95 |
|
96 |
# モデルをHugging Face Hubにプッシュ
|
97 |
trainer.push_to_hub()
|
98 |
+
|
99 |
return f"モデルが'{repo_name}'リポジトリにデプロイされました!"
|
100 |
|
101 |
+
class CustomCallback(TrainerCallback):
|
102 |
+
def on_train_begin(self, args, state, control, **kwargs):
|
103 |
+
global progress_info
|
104 |
+
progress_info["status"] = "トレーニング開始"
|
105 |
+
progress_info["progress"] = 0
|
106 |
+
progress_info["time_remaining"] = None
|
107 |
+
|
108 |
+
def on_step_begin(self, args, state, control, **kwargs):
|
109 |
+
global progress_info
|
110 |
+
total_steps = state.num_train_steps
|
111 |
+
current_step = state.global_step
|
112 |
+
progress_info["status"] = f"エポック {state.epoch + 1} / {args.num_train_epochs}, ステップ {current_step + 1} / {total_steps}"
|
113 |
+
progress_info["progress"] = (current_step + 1) / total_steps
|
114 |
+
progress_info["time_remaining"] = None
|
115 |
+
|
116 |
+
def on_step_end(self, args, state, control, **kwargs):
|
117 |
+
global progress_info
|
118 |
+
total_steps = state.num_train_steps
|
119 |
+
current_step = state.global_step
|
120 |
+
elapsed_time = time.time() - state.log_history[0]["epoch_time"]
|
121 |
+
time_per_step = elapsed_time / (current_step + 1)
|
122 |
+
remaining_steps = total_steps - current_step
|
123 |
+
time_remaining = time_per_step * remaining_steps
|
124 |
+
progress_info["status"] = f"エポック {state.epoch + 1} / {args.num_train_epochs}, ステップ {current_step + 1} / {total_steps}"
|
125 |
+
progress_info["progress"] = (current_step + 1) / total_steps
|
126 |
+
progress_info["time_remaining"] = f"{time_remaining:.2f}秒"
|
127 |
+
|
128 |
# Gradio UI
|
129 |
with gr.Blocks() as demo:
|
130 |
gr.Markdown("### pythia トレーニングとデプロイ")
|
|
|
132 |
repo_input = gr.Textbox(label="リポジトリ名", placeholder="デプロイするリポジトリ名を入力してください...")
|
133 |
license_input = gr.Textbox(label="ライセンス", placeholder="ライセンス情報を入力してください...")
|
134 |
output = gr.Textbox(label="出力")
|
135 |
+
progress = gr.Progress(track_tqdm=True)
|
136 |
+
status = gr.Textbox(label="ステータス", value="待機中")
|
137 |
+
time_remaining = gr.Textbox(label="残り時間", value="待機中")
|
138 |
train_button = gr.Button("デプロイ")
|
139 |
|
140 |
+
def update_ui():
|
141 |
+
global progress_info
|
142 |
+
status.update(value=progress_info["status"])
|
143 |
+
progress.update(value=progress_info["progress"])
|
144 |
+
time_remaining.update(value=f"{progress_info['time_remaining']}秒" if progress_info['time_remaining'] else "待機中")
|
145 |
+
|
146 |
+
train_button.click(fn=train_and_deploy, inputs=[token_input, repo_input, license_input], outputs=output).then(fn=update_ui)
|
147 |
|
148 |
demo.launch()
|