Sakalti commited on
Commit
bf980a9
1 Parent(s): 9cf38cf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -58
app.py CHANGED
@@ -1,59 +1,60 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Qwen/Qwen2.5-0.5b-Instruct")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- # ストリーミングを無効にして、単一の応答を取得
29
- response = client.chat_completion(
30
- messages,
31
- max_tokens=max_tokens,
32
- temperature=temperature,
33
- top_p=top_p,
34
- )
35
-
36
- return response.choices[0].message.content
37
-
38
- """
39
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
40
- """
41
- demo = gr.ChatInterface(
42
- respond,
43
- additional_inputs=[
44
- gr.Textbox(value="ユーザーの質問や依頼にのみ答えてください。ポジティブに答えてください", label="システムプロンプト"),
45
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="トークンの最大値"),
46
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"),
47
- gr.Slider(
48
- minimum=0.1,
49
- maximum=1.0,
50
- value=0.95,
51
- step=0.05,
52
- label="Top-p (nucleus sampling)",
53
- ),
54
- ],
55
- )
56
-
57
-
58
- if __name__ == "__main__":
59
- demo.launch()
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+
5
+ # モデルとトークナイザーの読み込み
6
+ model_name = "Qwen/Qwen2.5-0.5b-Instruct"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name, ignore_mismatched_sizes=True)
9
+
10
+ # 応答を生成する関数
11
+ def respond(message, history, max_tokens, temperature, top_p):
12
+ # 入力履歴と新しいメッセージを連結
13
+ if history is None:
14
+ history = []
15
+
16
+ input_text = ""
17
+ for user_message, bot_response in history:
18
+ input_text += f"User: {user_message}\nAssistant: {bot_response}\n"
19
+ input_text += f"User: {message}\nAssistant:"
20
+
21
+ # トークナイズ
22
+ inputs = tokenizer(input_text, return_tensors="pt")
23
+
24
+ # モデルによる応答生成
25
+ with torch.no_grad():
26
+ outputs = model.generate(
27
+ inputs.input_ids,
28
+ max_length=inputs.input_ids.shape[1] + max_tokens,
29
+ do_sample=True,
30
+ top_p=top_p,
31
+ temperature=temperature,
32
+ )
33
+
34
+ # 応答をデコード
35
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
36
+ # 最後のユーザー入力以降の応答部分を抽出
37
+ response = response.split("Assistant:")[-1].strip()
38
+
39
+ # 応答と履歴を更新
40
+ history.append((message, response))
41
+ return response, history
42
+
43
+ # Gradioインターフェースの設定
44
+ with gr.Blocks() as demo:
45
+ gr.Markdown("## AIチャット")
46
+ chatbot = gr.Chatbot()
47
+ msg = gr.Textbox(label="あなたのメッセージ", placeholder="ここにメッセージを入力...")
48
+ max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max new tokens")
49
+ temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
50
+ top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
51
+ send_button = gr.Button("送信")
52
+ clear = gr.Button("クリア")
53
+
54
+ def clear_history():
55
+ return [], []
56
+
57
+ send_button.click(respond, inputs=[msg, chatbot, max_tokens, temperature, top_p], outputs=[chatbot, chatbot])
58
+ clear.click(clear_history, outputs=[chatbot])
59
+
60
+ demo.launch()