import gradio as gr from huggingface_hub import InferenceClient import time """ `huggingface_hub` の推論 API サポートについての詳細は、ドキュメントを確認してください: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("Qwen/Qwen2.5-3b-Instruct") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # ストリーミングを無効にして、単一の応答を取得 start_time = time.time() # 予測時間計測開始 response = client.chat_completion( messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ) elapsed_time = time.time() - start_time # 予測時間計測終了 return response.choices[0].message.content, f"予測時間: {elapsed_time:.2f}秒" """ ChatInterfaceのカスタマイズ方法については、gradioのドキュメントを確認してください: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="ユーザーの質問や依頼にのみ答えてください。ポジティブに答えてください", label="システムメッセージ"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="最大新規トークン"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (核サンプリング)", ), ], ) if __name__ == "__main__": demo.launch()