#!/usr/bin/env python import os from threading import Thread from queue import Queue, Empty from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer DESCRIPTION = "# wasser" DESCRIPTION += "\n
現在の環境に合わせて最適化されています。
" MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "32768")) model_id = "sakaltcommunity/wasser-4b" if torch.cuda.is_available(): model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto") else: model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32) model.eval() tokenizer = AutoTokenizer.from_pretrained(model_id) def apply_chat_template(conversation: list[dict[str, str]]) -> str: prompt = "\n".join([f"{c['role']}: {c['content']}" for c in conversation]) prompt = f"{prompt}\nASSISTANT: " return prompt @torch.inference_mode() def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.7, top_p: float = 0.95, top_k: int = 50, repetition_penalty: float = 1.0, ) -> Iterator[str]: conversation = [] for user, assistant in chat_history: conversation.extend([{"role": "USER", "content": user}, {"role": "ASSISTANT", "content": assistant}]) conversation.append({"role": "USER", "content": message}) prompt = apply_chat_template(conversation) input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) output_queue = Queue() def inference(): outputs = model.generate( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=repetition_penalty, pad_token_id=tokenizer.eos_token_id, ) for token in tokenizer.decode(outputs[0], skip_special_tokens=True).split(): output_queue.put(token) output_queue.put(None) # 終了シグナル Thread(target=inference).start() outputs = [] while True: try: token = output_queue.get(timeout=20.0) # タイムアウト設定 if token is None: break outputs.append(token) yield "".join(outputs) except Empty: yield "現在応答を生成中です。しばらくお待ちください。" demo = gr.ChatInterface( fn=generate, type="tuples", additional_inputs_accordion=gr.Accordion(label="詳細設定", open=False), additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.95, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0, ), ], stop_btn=None, examples=[ ["東京の観光名所を教えて。"], ["落武者って何?"], ["暴れん坊将軍って誰のこと?"], ["人がヘリを食べるのにかかる時間は?"], ], description=DESCRIPTION, css_paths="style.css", fill_height=True, ) if __name__ == "__main__": demo.launch()