Create api.py
Browse files
api.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from fastapi.responses import Response
|
4 |
+
import uvicorn
|
5 |
+
from PIL import Image
|
6 |
+
import io
|
7 |
+
import numpy as np
|
8 |
+
from lang_sam import LangSAM
|
9 |
+
import supervision as sv
|
10 |
+
|
11 |
+
app = FastAPI()
|
12 |
+
|
13 |
+
# Enable CORS for all origins (Adjust as needed)
|
14 |
+
app.add_middleware(
|
15 |
+
CORSMiddleware,
|
16 |
+
allow_origins=["*"], # Allow requests from any origin (Change this for security)
|
17 |
+
allow_credentials=True,
|
18 |
+
allow_methods=["*"], # Allow all HTTP methods
|
19 |
+
allow_headers=["*"], # Allow all headers
|
20 |
+
)
|
21 |
+
|
22 |
+
# Load the segmentation model
|
23 |
+
model = LangSAM()
|
24 |
+
|
25 |
+
def draw_image(image_rgb, masks, xyxy, probs, labels):
|
26 |
+
mask_annotator = sv.MaskAnnotator()
|
27 |
+
# Create class_id for each unique label
|
28 |
+
unique_labels = list(set(labels))
|
29 |
+
class_id_map = {label: idx for idx, label in enumerate(unique_labels)}
|
30 |
+
class_id = [class_id_map[label] for label in labels]
|
31 |
+
|
32 |
+
# Add class_id to the Detections object
|
33 |
+
detections = sv.Detections(
|
34 |
+
xyxy=xyxy,
|
35 |
+
mask=masks.astype(bool),
|
36 |
+
confidence=probs,
|
37 |
+
class_id=np.array(class_id),
|
38 |
+
)
|
39 |
+
annotated_image = mask_annotator.annotate(scene=image_rgb.copy(), detections=detections)
|
40 |
+
return annotated_image
|
41 |
+
|
42 |
+
@app.post("/segment/")
|
43 |
+
async def segment_image(file: UploadFile = File(...), text_prompt: str = Form(...)):
|
44 |
+
image_bytes = await file.read()
|
45 |
+
image_pil = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
46 |
+
|
47 |
+
# Run segmentation
|
48 |
+
results = model.predict([image_pil], [text_prompt])
|
49 |
+
|
50 |
+
# Convert to NumPy array
|
51 |
+
image_array = np.asarray(image_pil)
|
52 |
+
output_image = draw_image(
|
53 |
+
image_array,
|
54 |
+
results[0]["masks"],
|
55 |
+
results[0]["boxes"],
|
56 |
+
results[0]["scores"],
|
57 |
+
results[0]["labels"],
|
58 |
+
)
|
59 |
+
|
60 |
+
# Convert back to PIL Image
|
61 |
+
output_pil = Image.fromarray(np.uint8(output_image)).convert("RGB")
|
62 |
+
|
63 |
+
# Save to byte stream
|
64 |
+
img_io = io.BytesIO()
|
65 |
+
output_pil.save(img_io, format="PNG")
|
66 |
+
img_io.seek(0)
|
67 |
+
|
68 |
+
return Response(content=img_io.getvalue(), media_type="image/png")
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|