add sam2 endpoint
Browse files
main.py
CHANGED
@@ -14,6 +14,10 @@ import io
|
|
14 |
import numpy as np
|
15 |
from lang_sam import LangSAM
|
16 |
import supervision as sv
|
|
|
|
|
|
|
|
|
17 |
|
18 |
app = FastAPI()
|
19 |
|
@@ -30,13 +34,36 @@ app.add_middleware(
|
|
30 |
os.makedirs("/tmp/huggingface", exist_ok=True)
|
31 |
os.makedirs("/tmp/torch", exist_ok=True)
|
32 |
|
33 |
-
# Load the
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
@app.get("/")
|
37 |
async def root():
|
38 |
return {"message": "LangSAM API is running!"}
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def draw_image(image_rgb, masks, xyxy, probs, labels):
|
41 |
mask_annotator = sv.MaskAnnotator()
|
42 |
# Create class_id for each unique label
|
@@ -54,13 +81,51 @@ def draw_image(image_rgb, masks, xyxy, probs, labels):
|
|
54 |
annotated_image = mask_annotator.annotate(scene=image_rgb.copy(), detections=detections)
|
55 |
return annotated_image
|
56 |
|
57 |
-
@app.post("/segment/")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
async def segment_image(file: UploadFile = File(...), text_prompt: str = Form(...)):
|
59 |
image_bytes = await file.read()
|
60 |
image_pil = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
61 |
|
62 |
# Run segmentation
|
63 |
-
results =
|
64 |
|
65 |
# Convert to NumPy array
|
66 |
image_array = np.asarray(image_pil)
|
|
|
14 |
import numpy as np
|
15 |
from lang_sam import LangSAM
|
16 |
import supervision as sv
|
17 |
+
from sam2.build_sam import build_sam2
|
18 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
19 |
+
import torch
|
20 |
+
import cv2
|
21 |
|
22 |
app = FastAPI()
|
23 |
|
|
|
34 |
os.makedirs("/tmp/huggingface", exist_ok=True)
|
35 |
os.makedirs("/tmp/torch", exist_ok=True)
|
36 |
|
37 |
+
# Load the langSAM model
|
38 |
+
langsam_model = LangSAM()
|
39 |
+
|
40 |
+
# Load SAM2 Model
|
41 |
+
sam2_checkpoint = "sam2.1_hiera_small.pt"
|
42 |
+
model_cfg = "configs/sam2.1/sam2.1_hiera_s.yaml"
|
43 |
+
device = torch.device("cpu")
|
44 |
+
|
45 |
+
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
|
46 |
+
predictor = SAM2ImagePredictor(sam2_model)
|
47 |
|
48 |
@app.get("/")
|
49 |
async def root():
|
50 |
return {"message": "LangSAM API is running!"}
|
51 |
|
52 |
+
def apply_mask(image, mask):
|
53 |
+
"""Overlay mask on image."""
|
54 |
+
mask = mask.astype(np.uint8) * 255 # Convert mask to 0-255 scale
|
55 |
+
mask_colored = np.zeros((*mask.shape, 3), dtype=np.uint8)
|
56 |
+
mask_colored[mask > 0] = [30, 144, 255] # Blue color for the mask
|
57 |
+
|
58 |
+
# Add contour
|
59 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
60 |
+
cv2.drawContours(mask_colored, contours, -1, (255, 255, 255), thickness=2)
|
61 |
+
|
62 |
+
# Blend with original image
|
63 |
+
overlay = cv2.addWeighted(image, 0.7, mask_colored, 0.3, 0)
|
64 |
+
return overlay
|
65 |
+
|
66 |
+
|
67 |
def draw_image(image_rgb, masks, xyxy, probs, labels):
|
68 |
mask_annotator = sv.MaskAnnotator()
|
69 |
# Create class_id for each unique label
|
|
|
81 |
annotated_image = mask_annotator.annotate(scene=image_rgb.copy(), detections=detections)
|
82 |
return annotated_image
|
83 |
|
84 |
+
@app.post("/segment/sam2")
|
85 |
+
async def segment_image(
|
86 |
+
file: UploadFile = File(...),
|
87 |
+
x: int = Form(...),
|
88 |
+
y: int = Form(...)
|
89 |
+
):
|
90 |
+
"""Segment image using SAM2 with a single input point."""
|
91 |
+
image_bytes = await file.read()
|
92 |
+
image_pil = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
93 |
+
image_array = np.array(image_pil)
|
94 |
+
|
95 |
+
predictor.set_image(image_array)
|
96 |
+
|
97 |
+
input_point = np.array([[x, y]])
|
98 |
+
input_label = np.array([1]) # Foreground point
|
99 |
+
|
100 |
+
# Run SAM2 model
|
101 |
+
masks, scores, logits = predictor.predict(
|
102 |
+
point_coords=input_point,
|
103 |
+
point_labels=input_label,
|
104 |
+
multimask_output=True,
|
105 |
+
)
|
106 |
+
|
107 |
+
# Get top mask
|
108 |
+
top_mask = masks[np.argmax(scores)]
|
109 |
+
|
110 |
+
# Apply mask overlay
|
111 |
+
output_image = apply_mask(image_array, top_mask)
|
112 |
+
|
113 |
+
# Convert to PNG
|
114 |
+
output_pil = Image.fromarray(output_image)
|
115 |
+
img_io = io.BytesIO()
|
116 |
+
output_pil.save(img_io, format="PNG")
|
117 |
+
img_io.seek(0)
|
118 |
+
|
119 |
+
return Response(content=img_io.getvalue(), media_type="image/png")
|
120 |
+
|
121 |
+
|
122 |
+
@app.post("/segment/langsam")
|
123 |
async def segment_image(file: UploadFile = File(...), text_prompt: str = Form(...)):
|
124 |
image_bytes = await file.read()
|
125 |
image_pil = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
126 |
|
127 |
# Run segmentation
|
128 |
+
results = langsam_model.predict([image_pil], [text_prompt])
|
129 |
|
130 |
# Convert to NumPy array
|
131 |
image_array = np.asarray(image_pil)
|